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FEATURES OF RANGE ASYMMETRIC NUMBER SYSTEM ENCODING AND
DECODING

BACKGROUND
[001] With the emergence of media streaming over the Internet and other digital
networks, digital processing of media has become commonplace. Engineers use
compression to process media efficiently while still maintaining quality. One goal of
media compression 1s to represent a media signal in a way that provides maximum signal
quality for a given amount of bits, Stated differently, this goal is to represent the media
signal with the least bits for a given level of quality. Other goals such as limiting
computational complexity, improving resiliency to transmission errors, and limiting
overall delay due to encoding/transmission/decoding apply in some scenarios.
[002] Media compression typically includes one or more stages of prediction,
frequency transformation, and quantization, followed by entropy coding. Corresponding
media decompression typically includes entropy decoding followed by one or more stages
of inverse quantization, inverse frequency transformation, and prediction. In general,
entropy coding converts input symbols to encoded data having a lower bitrate, by
exploiting redundancy in the input symbols (e.g., exploiting a pattern of many input
symbols having common values, and few input symbols having rare values). Entropy
decoding converts encoded data to output symbols, which ¢orrespond to the input
symbols. There are many variations of entropy coding/decoding, which offer different
tradeoffs in terms of compression efficiency (reduction in batrate) and computational
complexity. For example, Huffman coding/decoding is computationally simple but has
poor compression efficiency for some distributions of values of input symbols. On the
other hand, arithmetic coding/decoding usually has much better compression efficiency, at
the cost of much higher computational complexity.
[003] Asymmetric number system (“ANS”) coding/decoding potentially offers
high compression efficiency {(comparable to arithmetic coding/decoding) and low
computational complexity (comparable to Huffman coding/decoding). In particular, range
ANS (“RANS”) coding/decoding can work well when symbols have many possible values
(large alphabet) but certain values (such as zero) are very common. RANS
encoding/decoding also permits interleaving of output from multiple RANS encoders into
a single output bitstream of encoded data, with multiple RANS decoders being usable to

decode symbols from the bitstream concurrently, which can speed up the RANS
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encoding/decoding process.
[004] Considering the importance of entropy coding/decoding to the overall
efficiency of media compression and decompression, entropy coding/decoding has
attracted significant attention in research and development. Although previous RANS
encoding/decoding approaches provide good performance for many scenarios, there is
room for improvement in terms of the computational efficiency and adaptiveness of
RANS encoding/decoding.

SUMMARY
[005] In summary, the detailed description presents innovations in range
asymmetric number system (“RANS”) coding and decoding. Some of the innovations
relate to hardware implementations of RANS decoding that organize operations in two
phases, which can improve the computational efficiency of RANS decoding. Other
innovations relate to adapting RANS encoding/decoding for different distributions or
patterns of values for symbols. For example, RANS encoding/decoding can adapt by
switching a default symbol width (the number of bits per symbol), adjusting symbol width
on a fragment-by-fragment basis for different fragments of symbols (where a fragment can
include a variable number of symbols and variable amount of encoded data), switching
between different static probability models on a fragment-by-fragment basis for different
fragments of symbols, and/or selectively flushing (or retaining) the state of a RANS
decoder on a fragment-by-fragment basis for different fragments of symbaols. In many
cases, such innovations can improve compression efficiency while also providing
computationally efficient performance.
[006] According to a first set of innovations described herein, a computer system
includes an encoded data buffer and a RANS decoder. The encoded data buffer is
configured to store encoded data for at least part of a bitstream. The RANS decoder is
configured to perform operations in multiple phases using special-purpose hardware. In
particular, the RANS decoder is configured to perform operations in a first phase and
second phase. The operations include, as part of a first phase, selectively updating state of
the RANS decoder using probability information for an output symbol from a previous
iteration. The operations further include, as part of a second phase, selectively merging a
portion of the encoded data from an input buffer into the state of the RANS decoder, and
selectively generating an output symbol for a current iteration using the state of the RANS
decoder. In this way, the RANS decoder can decode the encoded datain a

computationally efficient manner using the special-purpose hardware.



10

15

20

25

WO 2020/263438 PCT/US2020/032397

[007] According to a second set of innovations described herein, a computer
system includes a RANS encoder and an encoded data buffer. The RANS encoder is
configured to encode input symbols, thereby generating encoded data for at least part of a
bitstream. In particular, for the encoding, the RANS encoder is configured to perform
operations that include selecting a symbaol width from among multiple available symbol
widths, configuring the RANS encoder to perform RANS encoding at the selected symbol
width, and performing the RANS encoding at the selected symbol width. As part of the
configuration of the RANS encoder, the RANS encoder 1s configured to select a set of pre-
defined lookup tables having probability information for the selected symbol width, In
this way, the RANS encoder can adapt to different symbol widths for input symbols of
different streams (or adapt to different probability distributions for input symbols of
different streams), potentially improving compression efficiency. The encoded data buffer
is configured to store, for output, the encoded data for the at least part of the bitstream.
[008] For corresponding decoding, a computer system includes an encoded data
buffer and a RANS decoder. The encoded data buffer is configured to receive and store
encoded data for at least part of a bitstream. The RANS decoder is configured to decode
the encoded data for the at least part of the bitstream, thereby generating output symbols.
In particular, for the decoding, the RANS decoder is configured to perform operations that
include selecting a symbol width from among multiple available symbol widths,
configuring the RANS decoder to perform RANS decoding at the selected symbol width,
and performing the RANS decoding at the selected symbol width. As part of the
configuration of the RANS decoder, the RANS decoder 15 configured to select a set of pre-
defined lookup tables having probability information for output symbols of the selected
symbol width. In this way, the RANS decoder can adapt to different symbol widths for
output symbols of different streams {(or adapt to different probability distributions for
output symbols of different streams), which can allow the RANS decoder to benefit from
improved compression efficiency.

[009] According to a third set of innovations described herein, a computer system
includes a RANS encoder and an encoded data buffer. The RANS encoder 1s configured
to encode input symbols, thereby generating encoded data for at least part of a bitstream.
In particular, for the encoding, the RANS encoder is configured to perform operations that
include determining whether or not state of a RANS decoder is to be flushed and re-
initialized for decoding of the encoded data for the at least part of the bitstream, setting a

syntax element that indicates that decision, and performing RANS encoding. In this way,
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the RANS encoder can decide, on a fragment-by-fragment basis, whether a RANS decoder
will (a) flush and re-initialize its state for decoding of a given fragment, or (b) continue to
use the state from decoding of the previous fragment, which can improve compression
efficiency. The encoded data buffer is configured to store, for output, the encoded data for
the at least part of the bitstream. A header in the at least part of the bitstream includes the
syntax element that indicates whether or not the state of the RANS decoder 1s to be
flushed and re-initialized for decoding of the encoded data for the at least part of the
bitstream.

[010] For corresponding decoding, a computer system includes an encoded data
buffer and a RANS decoder. The encoded data buffer is configured to receive and store
encoded data for at least part of a bitstream. A header in the at least part of the bitstream
includes a syntax element that indicates whether or not state of the RANS decoder is to be
flushed and re-initialized for decoding of the encoded data for the at least part of the
bitstream. The RANS decoder is configured to decode the encoded data for the at least
part of the bitstream, thereby generating output symbols. In particular, for the decoding,
the RANS decoder is configured to perform operations that include reading the syntax
element, determining (based at least in part on the syntax element) whether or not the state
of the RANS decoder is to be flushed and re-initialized for decoding of the encoded data
for the at least part of the bitstream, and performing RANS decoding of the encoded data.
In this way, the RANS decoder can decide, on a fragment-by-fragment basis, whether the
RANS decoder will (a) flush and re-initialize its state for decoding of a given fragment, or
(b) continue to use the state from decoding of the previous fragment, which can allow the
RANS decoder to benefit from improved compression efficiency.

[011] According to a fourth set of innovations described herein, a computer
system includes a RANS encoder and an encoded data buffer. The RANS encoder is
configured to encode input symbols, thereby generating encoded data for at least part of a
bitstream. In particular, for the encoding, the RANS encoder is configured to perform
operations that include selecting, for the encoded data for the at least part of the bitstream,
one of multiple available static probability models, setting a syntax element that indicates
the selected static probability model, configuring the RANS encoder to perform RANS
encoding using the selected static probability model, and performing RANS encoding
using the selected static probability model. In this way, the RANS encoder can quickly
and efficiently adapt to different probability distributions for input symbols on a fragment-

by-fragment basis, potentially improving compression efficiency. The encoded data
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buffer is configured to store, for output, the encoded data for the at least part of the
bitstream. A header in the at least part of the bitstream includes the syntax element that
indicates the selected static probability model for the encoded data for the at least part of
the bitstream.

[012] For corresponding decoding, a computer system includes an encoded data
buffer and a RANS decoder. The encoded data buffer is configured to receive and store
encoded data for at least part of a bitstream. A header in the at least part of the bitstream
includes a syntax element that indicates a selection of a static probability model, for the
encoded data for the at least part of the bitstream, from among multiple available static
probability models. The RANS decoder is configured to decode the encoded data for the
at least part of the bitstream, thereby generating output symbols. In particular, for the
decoding, the RANS decoder is configured to perform operations that include reading the
syntax element, selecting (based at least in part on the syntax element) one of the multiple
available static probability models, configuring the RANS decoder to perform RANS
decoding using the selected static probability model, and performing RANS decoding of
the encoded data using the selected static probability model. In this way, the RANS
decoder can quickly and efficiently adapt to different probability distributions for output
symbols on a fragment-by-fragment basis, which can allow the RANS decoder to benefit
from improved compression efficiency.

[013] According to a fifth set of innovations described herein, a computer system
includes a RANS encoder and an encoded data buffer. The RANS encoder is configured
to encode input symbols, thereby generating encoded data for at least part of a bitstream.
In particular, for the encoding, the RANS encoder is configured to perform operations that
include determining an adjustment to symbol width for the encoded data for the at least
part of the bitstream, setting a syntax element that indicates the adjustment to symbol
width, configuring the RANS encoder to perform RANS encoding at the adjusted symbol
width, and performing the RANS encoding at the adjusted symbol width. In this way, the
RANS encoder can quickly and efficiently adapt to different symbol widths for input
symbols on a fragment-by-fragment basis, potentially improving compression efficiency.
The enceded data buttfer is configured to store, for output, the encoded data for the at least
part of the bitstream. A header in the at least part of the bitstream includes the syntax
element that indicates the adjustment to symbol width for the encoded data for the at least
part of the bitstream.

[014] For corresponding decoding, a computer system includes an encoded data
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buffer and a RANS decoder. The encoded data buffer is configured to receive and store
encoded data for at least part of a bitstream. A header in the at least part of the bitstream
includes a syntax element that indicates an adjustment to symbol width for the encoded
data for the at least part of the bitstream. The RANS decoder is configured to decode the
encoded data for the at least part of the bitstream, thereby generating output symbols. In
particular, for the decoding, the RANS decoder is configured to perform operations that
include reading the syntax element, determining (based at least in part on the syntax
element) the adjustment to symbol width, configuring the RANS decoder to perform
RANS decoding at the adjusted symbol width, and performing the RANS decoding at the
adjusted symbol width. In this way, the RANS decoder can quickly and efficiently adapt
to different symbol widths for output symbols on a fragment-by-fragment basis, which can
allow the RANS decoder to benefit from improved compression efficiency.
[015] The innovations described herein include, but are not limited to, the
innovations covered by the claims and table of features at the end of the application. The
respective innovations can be implemented as part of a method, as part of a computer
system configured to perform the method, or as part of computer-readable media storing
computer-executable instructions for causing one or more processors in a computer system
to perform the method. The vanous innovations can be used in combination or separately.
This summary 1s provided to introduce a selection of concepts in a simplified form that are
further described below in the detailed description. This summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended
to be used to limit the scope of the claimed subject matter. The foregoing and other
objects, features, and advantages of the invention will become more apparent from the
following detailed description, which proceeds with reference to the accompanying figures
and illustrates a number of examples. Examples may also be capable of other and
different applications, and some details may be modified in vanous respects all without
departing from the spirit and scope of the disclosed innovations.

BRIEF DESCRIPTION OF THE DRAWINGS

[016] The following drawings illustrate some features of the disclosed
innovations.
[017] FIG. 1 1s a diagram illustrating an example computer system in which some

described examples can be implemented.
[018] FIGS. 2a and 2b are diagrams illustrating example network environments in

which some described examples can be implemented.
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[019] FIGS. 3 and 4 are diagrams illustrating an example media encoder system
and an example media decoder system, respectively, in which some described examples
can be implemented.

[020] FIGS. 5 and 6 are diagrams illustrating an example RANS encoder system
and an example RANS decoder system, respectively, in which some described examples

can be implemented.

[021] FIGS. 7a and 7b are flowcharts illustrating example techniques for RANS
encoding and RANS decoding, respectively, according to some examples described
herein.

[022] FIG. 8 is a diagram illustrating phases of example two-phase RANS

decoding according to some examples described herein.
[023] FIGS. 9a-9d are flowcharts illustrating example techniques for two-phase
RANS decoding according to some examples described hetein.
[024] FIGS. 10a and 10b are flowcharts illustrating example techniques for
switching symbol width during RANS encoding and RANS decoding, respectively,
according to some examples described herein.
[025] FIGS. 11a and 11b are flowcharts illustrating example techniques for
controlling selective flushing/re-imtialization of RANS decoder state on a fragment-by-
fragment basis during RANS encoding and RANS decoding, respectively, according to
some examples described herein.
[026] FIGS. 12a and 12b are flowcharts illustrating example techniques for
switching static probability models on a fragment-by-fragment basis during RANS
encoding and RANS decoding, respectively, according to some examples described
herein.
[027] FIGS. 13a and 13b are flowcharts illustrating example techniques for
adjusting symbol width on a fragment-by-fragment basis during RANS encoding and
RANS decoding, respectively, according to some examples described herein.
[028] FIG 14 1s a diagram illustrating an example bitstream, according to some
examples described herein.
|029] FIGS. 15a-15k are code listings illustrating an example decoder module
according to some examples described herein,

DETAILED DESCRIPTION
[030] The detailed description presents innovations in range asymmetric number

system (“RANS”) coding and decoding. Some of the innovations relate to hardware
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implementations of RANS decoding that organize operations in two phases, which can
improve the computational efficiency of RANS decoding. Other innovations relate to
adapting RANS encoding/decoding for different distributions or patterns of values for
symbols. For example, RANS encoding/decoding can adapt by switching a default
symbol width (the number of bits per symbol). Or, for different fragments of symbols,
RANS encoding/decoding can adapt by adjusting symbol width on a fragment-by-
fragment basis, switching between different static probability models on a fragment-by-
fragment basis, and/or selectively flushing (or retaining) the state of a RANS decoder on a
fragment-by-fragment basis. In many cases, such innovations can improve compression
efficiency while also providing computationally efficient performance.

[031] In the examples described herein, identical reference numbers in different
figures indicate an 1dentical component, module, or operation. More generally, various
alternatives to the examples described herein are possible. For example, some of the
methods described herein can be altered by changing the ordering of the method acts
described, by splitting, repeating, or omitting certain method acts, etc. The various aspects
of the disclosed technology can be used in combination or separately. Some of the
innovations described herein address one or more of the problems noted in the
background. Typically, a given technique/tool does not solve all such problems. It is to
be understood that other examples may be utilized and that structural, logical, software,
hardware, and electrical changes may be made without departing from the scope of the
disclosure. The following description is, therefore, not to be taken in a limited sense.

Rather, the scope of the present invention is defined by the appended claims and table of

features.
L Example Computer Systems.
[032] FIG. 1 illustrates a generalized example of a suitable computer system

(100} in which several of the described innovations may be implemented. The innovations
described herein relate to RANS encoding and/or RANS decoding. Aside from its use in
RANS encoding and/or RANS decoding, the computer system (100) is not intended to
suggest any limitation as to scope of use or functionality, as the innovations may be
implemented in diverse computer systems, including special-purpose computer systems
adapted for operations in RANS encoding and/or RANS decoding.

[033] With reference to FIG. 1, the computer system (100) includes one or more
processing cores (110...11x) of a central processing unit (“CPU”) and local, on-chip

memory (118). The processing core(s) (110...11x) of the CPU execute computer-
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executable instructions. The number of processing core(s) (110... 11x) depends on
implementation and can be, for example, 4 or 8. The local memory (118) may be volatile
memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash
memory, etc.), or some combination of the two, accessible by the respective processing
core(s) (110_. 11x). For software-based implementations of RANS encoding/decoding,
the local memory (118} can store software (180}, in the form of computer-executable
instructions for operations performed by the respective processing core(s) (110...11x),
implementing tools for one or more innovations for RANS encoding and/or RANS
decoding. Alternatively, for GPU-accelerated implementations of RANS
encoding/decoding or hardware-accelerated implementations of RANS
encoding/decoding, the local memory (118} can store software (180), in the form of
computer-executable instructions for operations performed by the respective processing
core(s) (110_. 11x) for one or more drivers or other software layers, to implement tools for
one or more innovations for RANS encoding and/or RANS decoding.

[034] The computer system {100) further includes one or more processing cores
(120...12x) of a graphics processing unit (“GPU”) and local, on-chip memory (128). The
processing cores (120 .. 12x) of the GPU execute computer-executable instructions (e.g.,
for shader routines for media coding/decoding operations). The number of processing
core(s) (120...12x) depends on implementation and can be, for example, 64 or 128. The
local memory (128) may be volatile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two,
accessible by the respective processing core(s) (120...12x). For GPU-accelerated
implementations of RANS encoding/decoding, the local memory (128) can store software,
in the form of computer-executable instructions for operations performed by the respective
processing core(s) (120.. . 12x), implementing tools for one or more innovations for RANS
encoding and/or RANS decoding.

[035] The computer system {100) also includes one or more modules (130, 13x)
of special-purpose codec hardware {e.g., an application-specific integrated circuit
(“ASIC”) or other integrated circuit} along with local, on-chip memory (138). In some
example implementations, the module(s) (130... 13x) include one or more RANS decoder
modules, a feeder module (configured to provide encoded data to input buffers for the
respective RANS decoder modules), and a decoder array module configured to manage the
RANS decoder module(s). FIG. 6 shows an example RANS decoder (630) and associated
buffers, which are part of a RANS decoder system {600) FIGS. 15a-15k show code
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listings (1501-1511) for an example RANS decoder module. The module(s) (130...13x)
can instead, or additionally, include one or more RANS encoder modules, an output
module {configured to interleave output from the respective RANS encoder modules), and
an encoder array module configured to manage the RANS encoder module(s). FIG. 5
shows an example RANS encoder (520) and associated buffers, which are part of a RANS
decoder system (500). The local memory {138) may be volatile memory (e.g., registers,
cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some
combination of the two, accessible by the respective module(s) (130...13x).

[036] More generally, the term “processor” may refer generically to any device
that can process computer-executable instructions and may include a microprocessor,
microcontroller, programmable logic device, digital signal processor, and/or other
computational device. A processor may be a processing core of a CPU, other general-
putpose unit, or GPU. A processor may also be a specific-purpose processor implemented
using, for example, an ASIC or a field-programmable gate array (“FPGA”).

[037] The term “control logic™ may refer to a controller or, more generally, one or
more processors, operable to process computer-executable instructions, determine
outcomes, and generate outputs. Depending on implementation, control logic can be
implemented by software executable on a CPU, by software controlling special-purpose
hardware (e.g., a GPU or other graphics hardware), or by special-purpose hardware (e.g.,
in an ASIC).

[038] With reference to FIG. 1, the computer system (100) includes shared
memory (140), which may be volatile memory (e.g., RAM), non-volatile memoty (e.g.,
ROM, EEPROM, flash memory, etc.), or some combination of the two, accessible by the
processing core(s). The memory (140) stores software (180) implementing tools for one
or more innovations for RANS encoding and/or RANS decoding.

[039] The computer system (100) includes one or more network adapters (151).
As used herein, the term network adapter indicates any network interface card (“NIC”),
network mterface, network interface controller, or network interface device. The network
adapter(s) (151) enable communication over a network to another computing entity {(e.g.,
server, other computer system). The network can be a telephone network, wide area
network, local area network, storage area network, or other network. The network
adapter(s) (151) can support wired connections and/or wireless connections, for a wide-
area network, local-area network, personal-area network or other network. The network

adapter(s) (151) convey information such as computer-executable instructions, encoded
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media, or other data in a modulated data signal over network connection(s). A modulated
data signal is a signal that has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of example, and not limitation, the
network connections can use an electrical, optical, RF, or other carrier.

[040] A camera input (152) accepts video input in analog or digital form from a
video camera, which captures natural video. An audio input accepts audio input in analog
or digital form from a microphone {152), which captures audio.

[041] The computer system {100) optionally includes a motion sensor/tracker
input (153) for a motion sensor/tracker, which can track the movements of a user and
objects around the user. For example, the motion sensor/tracker allows a user (e.g., player
of a game) to interact with the computer system (100} through a natural user interface
using gestures and spoken commands. The motion sensor/tracker can incorporate gesture
recognition, facial recognition and/or voice recognition.

[042] A game controller input (154) accepts control signals from one or more
game controllers, over a wired connection or wireless connection. The control signals can
indicate user inputs from one or more directional pads, buttons, triggers and/or one or
more joysticks of a game controller. The control signals can also indicate user inputs from
a touchpad or touchscreen, gyroscope, accelerometer, angular rate sensor, magnetometer
and/or other control or meter of a game controller.

[043] The computer system {100) optionally includes a media player (155) and
video input (156). The media player (155) can play DVDs, Blu-ray disks, other disk
media and/or other formats of media. The video input (156} can accept input video in
analog or digital form (e.g., from a cable input, HDMI input or other input). A graphics
engine (not shown) can provide texture data for graphics in a computer-represented
environment.

[044] A video output (157) provides video output to a display device. The video
output (157) can be an HDMI output or other type of output. An audio output (157)
provides audio output to one or more speakers.

[045] The storage (160} may be removable or non-removable, and includes
magnetic media (such as magnetic disks, magnetic tapes or cassettes), optical disk media
and/or any other media which can be used to store information and which can be accessed
within the computer system (100). The storage (160) stores instructions for the software
(1830} implementing one or more innovations for RANS encoding and/or RANS decoding.

[046] The computer system {100) may have additional features, For example, the
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computer system (100) includes one or more other input devices and/or one or more other
output devices. The other input device(s) may be a touch input device such as a keyboard,
mouse, pen, or trackball, a scanning device, or another device that provides input to the
computer system (100). The other output device(s) may be a printer, CD-writer, or
another device that provides output from the computer system (100).

[047] An interconnection mechanism (not shown) such as a bus, controller, or
network interconnects the components of the computer system (100). Typically, operating
system software (not shown) provides an operating environment for other software
executing in the computer system (100), and coordinates activities of the components of
the computer system (100).

[048] The computer system (100) of FI1G. 1 is a physical computer system, A
virtual machine can include components organized as shown in FIG. 1.

[049] The term “application” or “program” may refer to software such as any
user-mode instructions to provide functionality. The software of the application (or
program} can further include instructions for an operating system and/or device drivers.
The software can be stored in associated memory. The software may be, for example,
firmware. While it s contemplated that an appropriately programmed general-purpose
computer or computing device may be used to execute such software, it1s also
contemplated that hard-wired circuitry or custom hardware (e.g., an ASIC) may be used in
place of, or in combination with, software instructions. Thus, examples described herein
are not limited to any specific combination of hardware and software.

|050] The term “computer-readable medium” refers to any medium that
participates in providing data (e.g., instructions) that may be read by a processor and
accessed within a computing environment. A computer-readable medium may take many
forms, including but not limited to non-volatile media and volatile media. Non-volatile
media include, for example, optical or magnetic disks and other persistent memory.
Volatile media include dynamic random access memory (“DRAM™). Common forms of
computer-readable media include, for example, a solid state drive, a flash drive, a hard
disk, any other magnetic medium, a CD-ROM, Digital Versatile Disc (“DVD”), any other
optical medium, RAM, programmable read-only memory (“PROM”), erasable
programmable read-only memory (“EPROM?”), a USB memory stick, any other memory
chip or cartridge, or any other medium from which a computer can read. The term
“computer-readable memory” specifically excludes transitory propagating signals, carrier

waves, and wave forms or other intangible or transitory media that may nevertheless be
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readable by a computer. The term “carrier wave” may refer to an electromagnetic wave
modulated in amplitude or frequency to convey a signal.

|051] The innovations can be described in the general context of computer-
executable instructions being executed in a computer system on a target real or virtual
processor. The computer-executable instructions can include instructions executable on
processing cores of a general-purpose processor to provide functionality described herein,
instructions executable to control a GPU or special-purpose hardware to provide
functionality described herein, instructions executable on processing cores of a GPU to
provide functionality described herein, and/or instructions executable on processing cores
of a special-purpose processor to provide functionality described herein. In some
implementations, computer-executable instructions can be organized in program modules.
Generally, program modules include routines, programs, libraries, objects, classes,
components, data structures, etc. that perform particular tasks or implement particular
abstract data types. The functionality of the program medules may be combined or split
between program modules as desired in various embodiments, Computer-executable
instructions for program modules may be executed within a local or distributed computer
system.

[052] Numerous examples are described in this disclosure, and are presented for
illustrative purposes only. The described examples are not, and are not intended to be,
limiting 1n any sense. The presently disclosed innovations are widely applicable to
numerous contexts, as is readily apparent from the disclosure. One of ordinary skill in the
art will recognize that the disclosed innovations may be practiced with various
modifications and alterations, such as structural, logical, software, and electrical
modifications. Although particular features of the disclosed innovations may be described
with reference to one or more particular examples, it should be understood that such
features are not limited to usage in the one or more particular examples with reference to
which they are described, unless expressly specified otherwise. The present disclosure is
neither a literal description of all examples nor a listing of features of the invention that
must be present in all examples.

[053] When an ordinal number (such as “first,” “second,” “third” and so on) is
used as an adjective before a term, that ordinal number is used (unless expressly specified
otherwise) merely to indicate a particular feature, such as to distinguish that particular
feature from another feature that is described by the same term or by a similar term. The

mere usage of the ordinal numbers “first,” “second,” “third,” and so on does not indicate
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any physical order or location, any ordering in time, or any ranking in importance, quality,
or otherwise. In addition, the mere usage of ordinal numbers does not define a numerical
limit to the features identified with the ordinal numbers.

LRI 1Y

[054] When introducing elements, the articles “a,” “an,” “the,” and “said” are
intended to mean that there are one or more of the elements. The terms “comprising,”
including,” and “having” are intended to be inclusive and mean that there may be
additional elements other than the listed elements.

[055] When a single device, component, module, or structure 1s described,
multiple devices, components, modules, or structures (whether or not they cooperate) may
instead be used in place of the single device, component, module, or structure.
Functionality that 1s described as being possessed by a single device may instead be
possessed by multiple devices, whether or not they cooperate. Similarly, where multiple
devices, components, modules, or structures are described herein, whether or not they
cooperate, a single device, component, module, or structure may instead be used in place
of the multiple devices, components, modules, or structures. Functionality that is
described as being possessed by multiple devices may instead be possessed by a single
device. In general, a computer system or device can be local or distributed, and can
include any combination of special-purpose hardware and/or hardware with software
implementing the functionality described herein.

[056] Further, the techniques and tools described herein are not limited to the
specific examples described herein. Rather, the respective techniques and tools may be
utilized independently and separately from other technques and tools described herein.
[057] Device, components, modules, or structures that are in communication with
each other need not be in continuous communication with each other, unless expressly
specified otherwise. On the contrary, such devices, components, modules, or structures
need only transmit to each other as necessary or desirable, and may actually refrain from
exchanging data most of the time. For example, a device in communication with another
device via the Internet might not transmit data to the other device for weeks at a time. In
addition, devices, components, modules, or structures that are in communication with each
other may communicate directly or indirectly through one or more intermediaries.

[058] Asused herein, the term *send” denotes any way of conveying information
from one device, component, module, or structure to another device, component, module,
or structure. The term “receive” denotes any way of getting information at one device,

component, module, or structure from another device, component, module, or structure.
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The devices, components, modules, or structures can be part of the same computer system
or different computer systems. Information can be passed by value (e.g., as a parameter of
a message or function call) or passed by reference (e.g., in a buffer). Depending on
context, information can be communicated directly or be conveyed through one or more
intermediate devices, components, modules, or structures. As used herein, the term
“connected” denotes an operable communication link between devices, components,
modules, or structures, which can be part of the same computer system or different
computer systems. The operable communication link can be a wired or wireless network
connection, which can be direct or pass through one or more intermediaries (e.g., of a
network).

[059] A description of an example with several features does not imply that all or
even any of such features are required. On the contrary, a variety of optional features are
described to illustrate the wide variety of possible examples of the innovations described
herein. Unless otherwise specified explicitly, no feature is essential or required.

[060] Further, although process steps and stages may be described in a sequential
order, such processes may be configured to work in different orders. Description of a
specific sequence or order does not necessarily indicate a requirement that the steps/stages
be performed in that order. Steps or stages may be performed in any order practical.
Further, some steps or stages may be performed simultaneocusly despite being described or
implied as occurring non-simultaneously. Description of a process as including multiple
steps or stages does not imply that all, or even any, of the steps or stages are essential or
required. Various other examples may omit some or all of the described steps or stages.
Unless otherwise specified explicitly, no step or stage is essential or required. Similarly,
although a product may be described as including multiple aspects, qualities, or
characteristics, that does not mean that all of them are essential or required. Various other
examples may omit some or all of the aspects, qualities, or charactenistics.

[061] Many of the techniques and tools described herein are illustrated with
reference to a media coder/decoder system such as a video coder/decoder system, audio
coder/decoder system, or texture coder/decoder system. Alternatively, the techniques and
tools described herein can be implemented in a data coder/decoder system for use in
coding/decoding text data or other data, generally.

[062] An enumerated list of items does not imply that any or all of the items are
mutually exclusive, unless expressly specified otherwise. Likewise, an enumerated list of

items does not imply that any or all of the items are comprehensive of any category, unless
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expressly specified otherwise.

[063] For the sake of presentation, the detailed description uses terms like
“determine” and “select” to describe computer operations in a computer system. These
terms denote operations performed by one or more processors or other components in the
computer system, and should not be confused with acts performed by a human being. The
actual computer operations corresponding to these terms vary depending on
implementation.

IL Example Network Environments.

[064] FIGS. 2a and 2b show example network environments (201, 202) that
include media encoders (220) and media decoders (270). The encoders (220) and
decoders (270) are connected over a network (250) using an appropriate communication
protocol. The network (250) can include the Internet and/or another computer network.
[065] In the network environment (201) shown in FIG. 2a, each real-time
communication (“RTC”) tool (210} includes both an encoder (220) and a decoder (270)
for bidirectional communication. A given encoder {220) can produce output compliant
with a media codec format or extension of a media codec format, with a corresponding
decoder (270) accepting encoded data from the encoder (220). The bidirectional
communication can be part of a conference call or other two-party or multi-party
communication scenario. Although the network environment (201) in FIG. 2a includes
two real-time communication tools (210), the network environment (201) can instead
include three or more real-time communication tools (210) that participate in multi-party
communication.

[066] A real-time communication tool (210) is configured to manage encoding by
an encoder (220). FIG. 3 shows an example encoder system (300) that can be included in
the real-time communication tool (210). Alternatively, the real-time communication tool
(210) uses another encoder system. A real-time communication tool (210) 1s also
configured to manage decoding by a decoder (270). FIG. 4 shows an example decoder
system (400), which can be included in the real-time communication tool (210).
Alternatively, the real-time communication tool (210) uses another decoder system.

[067] In the network environment (202) shown 1n FIG. 2b, an encoding tool (212)
includes an encoder (220) that is configured to encode media for delivery to multiple
playback tools (214), which include decoders (270). The unidirectional communication
can be provided for a surveillance system, web monitoring system, remote desktop

conferencing presentation, gameplay broadcast, or other scenario in which media is
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encoded and sent from one location to one or more other locations for playback. Although
the network environment (202) in FIG. 2b includes two playback tools (214), the network
environment {202) can include more or fewer playback tools (214). In general, a playback
tool (214) is configured to communicate with the encoding tool (212) to determine a
stream of encoded media for the playback tool (214) to receive. The playback tool (214)
is configured to receive the stream, buffer the received encoded data for an appropriate
period, and begin decoding and playback.

[068] FIG. 3 shows an example encoder system (300) that can be included in the
encoding tool (212). Alternatively, the encoding tool (212) uses another encoder system.
The encoding tool (212) can also include server-side controller logic for managing
connections with one or more playback tools (214). FIG. 4 shows an example decoder
system (400), which can be included in the playback tool (214). Alternatively, the
playback tool (214) uses another decoder system. A playback tool (214) can also include
client-side controller logic for managing connections with the encoding tool (212).

II.  Example Media Encoder Systems.

[069] FIG. 3 is a block diagram of an example encoder system (300) in
conjunction with which some described examples may be implemented. The encoder
system (300) can be a general-purpose encoding tool capable of operating in any of
multiple encoding modes such as a low-latency encoding mode for real-time
communication, a transcoding mode, and a higher-latency encoding mode for producing
media for playback from a file or stream, or it can be a special-purpose encoding tool
adapted for one such encoding mode. The encoder system (300) can be adapted for
encoding of a particular type of content (e.g., camera video content, screen content, texture
content for graphics). The encoder system (300) can be implemented as part of an
operating system module, as part of an application library, as part of a standalene
application, using GPU hardware, and/or using special-purpose hardware. Overall, the
encoder system (300) is configured to receive input (305) from a source and produce
encoded data in a bitstream (395) as output to a channel. For example, the source can be a
video camera (for natural video), screen capture module (for screen content), graphics
engine (for texture), or microphone (for audio).

[070] The encoder system (300) includes cone or more prediction modules (310),
one or more residual coding modules (320), one or more residual reconstruction modules
(330), one or more buffers (335), one or more entropy coders (340), and a multiplexer

(350). The encoder system (300) can include other modules (not shown) that are
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configured to perform pre-processing operations (e.g., for color space conversion, sub-
sampling, etc.), control operations (e.g., receiving feedback from modules, providing
control signals to modules to set and change coding parameters during encoding, setting
syntax elements that indicate decisions made during encoding, so that a corresponding
decoder can make consistent decisions), filtering operations, or other operations.

[071] The prediction module(s) (310} are configured to predict a current unit of
media (e.g., frame, block, object, set) using previously reconstructed media content, which
is stored in the buffer(s) (335). In general, for video or image content, a block 1s an m x n
arrangement of sample values, and a frame 1s an arrangement of blocks in one or more
color planes. For audio content, a block or frame is a series of sample values. For texture
content, a set of sample values may represent texture values for points of a graphics object.
For example, for video content, the prediction module(s) (310) can be configured to
perform operations for motion compensation relative to previously encoded/reconstructed
pictures {(inter-picture prediction). Or, as another example, for video content or image
content, the prediction module(s) (310) can be configured to perform operations for intra
spatial prediction or intra block copy prediction within a picture (intra-picture prediction).
In some types of encoder system {300), the prediction module(s) (310) are arranged
differently. For example, for audio content, the prediction module(s) (310) can be
configured to perform operations for linear prediction. In other types of encoder system
(300), there are no prediction module(s).

[072] In FIG. 3, the prediction module(s) (310) are configured to produce a
prediction (315) for the current unit of media. The encoder system (300} is configured to
determine differences between the current unit of media from the input (305) and its
prediction (315). This provides values of the residual (318). For lossy coding, the values
of the residual (318) are processed by the residual coding module(s) (320} and residual
reconstruction module(s) (330). For lossless coding, the residual coding module(s) (320)
and residual reconstruction module(s) (330) can be bypassed.

[073] The residual coding module(s) (320) are configured to encode the values of
the residual (318). Typically, the residual coding module(s) (320) include a frequency
transformer and scaler/quantizer. A frequency transtormer is configured to convert input-
domain values into frequency-domain (1.e., spectral, transform) values. For block-based
coding, the frequency transformer can apply a discrete cosine transform (“DCT”), an
integer approximation thereof, or another type of forward block transform to blocks of

residual values (or sample values if the prediction (315) is null), producing blocks of
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frequency transform coefficients. The scaler/quantizer is configured to scale and quantize
the transform coefficients. Alternatively, the residual coding module(s) (320) can include
a scaler/quantizer but not a frequency transformer, in which case values of the residual
(318} are directly scaled/quantized.

[074] The residual reconstruction module(s) (330) are configured to reconstruct
values of the residual (318), which typically produces an approximation of the values of
the residual (318). Typically, the residual reconstruction module(s) (320) include a
scalet/inverse quantizer and an inverse frequency transformer. The scaler/inverse
quantizer is configured to perform inverse scaling and inverse quantization on the
quantized transform coefficients. When the transform stage has not been skipped, an
inverse frequency transformer is configured to perform an inverse frequency transform,
producing reconstructed residual values or sample values. If the transform stage has been
skipped, the inverse frequency transform is also skipped. In this case, the scaler/inverse
quantizer can be configured to perform inverse scaling and inverse quantization on
residual values (or sample value data), producing reconstructed values.

[075] The encoder system (300) is configured to combine the reconstructed
values of the residual (318) and the prediction (315) to produce an approximate or exact
reconstruction of the original content from the input (305). The reconstruction is stored in
the buffer(s) (335) for use in subsequent prediction operations. (In lossy compression,
some information is lost from the input (305).) If the residual ¢coding module(s} (320) and
residual reconstruction module(s) (330) are bypassed (for lossless compression), the
values of the residual (318) can be combined with the prediction (315). If residual values
have not been encoded/signaled, the encoder system (300) can be configured to use the
values of the prediction (315) as the reconstruction.

[076] The entropy coder(s) (340) are configured to entropy code the output from
the residual coding module(s) (320) (e.g., quantized transform coefficients) as well as side
information from the prediction module(s) (310) (e.g., parameters indicating how
prediction has been performed) and other side information {e.g., parameters indicating
decisions made during encoding). The entropy coder(s) (340) can be configured to
determine parameters that represent quantized transform coefficients, side information,
etc. The entropy coder(s) (340) can be configured to predict values of parameters based
on contextual information, then encode differences between the actual values and
predicted values. For input symbols that represent the values to be encoded, the entropy

coder(s) (340) can be configured to perform entropy coding in various ways. Typical
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entropy coding techniques include Exponential-Golomb coding, Golomb-Rice coding,
context-adaptive binary arithmetic coding (“CABAC™), differential coding, Huffman
coding, run length coding, Lempel-Ziv (“LZ”) coding, dictionary coding, RANS encoding
and other variations of ANS coding, and combinations of the above. The entropy coder(s)
(340) can be configured to use different coding techniques for different kinds of data and
to apply multiple techniques in combination. In particular, the entropy coder(s) (340)
include one or more RANS encoders. Examples of RANS encoders are described below
with reference to FIG. 5. The multiplexer (350) is configured to format the encoded data
for output as part of the bitstream (395).

[077] Depending on implementation and the type of compression desired,
modules of an encoder system (300} can be added, omitted, split into multiple modules,
combined with other modules, and/or replaced with like modules. In alternative
embodiments, encoder systems with different modules and/or other configurations of
modules perform one or more of the techniques described herein. Specific embodiments
of encoder systems typically use a variation or supplemented version of the encoder
system (300). The relationships shown between modules within the encoder system (300)
indicate general flows of information in the encoder system; other relationships are not
shown for the sake of simplicity.

|078] An encoded data buffer (not showny) is configured to store the encoded data
for the bitstream (395} for output. In general, the encoded data contains, according to the
syntax of an elementary coded media bitstream, syntax elements for various layers of
bitstream syntax. Media metadata can also be stored in the encoded data buffer. A
channel encoder (not shown) can be configured to implement one or more media system
multiplexing protocols or transport protocols, in which case the channel encoder can be
configured to add syntax elements as part of the syntax of the protocol(s). The channel
encoder can be configured to provide output to a channel, which represents storage, a
communications connection, or another channel for the output.

IV.  Example Media Decoder Systems.

[079] FIG. 4 is a block diagram of an example decoder system (400) in
conjunction with which some described examples may be implemented. The decoder
system (400) can be a general-purpose decoding tool capable of operating in any of
multiple decoding modes such as a low-latency decoding mode for real-time
communication and a higher-latency decoding mode for media playback from a file or

stream, or it can be a special-purpose decoding tool adapted for one such decoding mode.
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The decoder system (400) can be implemented as part of an operating system module, as
part of an application library, as part of a standalone application, using GPU hardware,
and/or using special-purpose hardware.

[080] Coded data is received from a channel, which can represent storage, a
communications connection, or another channel for coded data as input. A channel
decoder (not shown) can process the coded data from the channel. For example, the
channel decoder can be configured to implement one or more media system
demultiplexing protocols or transport protocols, in which case the channel decoder can be
configured to parse syntax elements added as part of the syntax of the protocol(s).

[081] An encoded data buffer (not shown) is configured to store encoded data that
is output from the channel decoder. The encoded data contains, according to the syntax of
an elementary coded media bitstream, syntax elements at various levels of bitstream
syntax. The encoded data buffer can also be configured to store media metadata. In
general, the encoded data buffer is configured to temporarily store encoded data until such
encoded data is used by the decoder system (400). At that point, encoded data is
transferred from the encoded data buffer to the decoder system (400). As decoding
continues, new coded data 15 added to the encoded data buffer, and the cldest coded data
remaining in the encoded data buffer 1s transferred to the decoder system (400).

|082] The decoder system (400) is configured to receive encoded datain a
bitstream {405) and produce reconstructed media as output (495). The decoder system
(400) includes a demultiplexer (410), one or more entropy decoders (420), one or more
residual reconstruction modules (430), one or more prediction modules (440}, and one or
more buffers (435). The decoder system (400) can include other modules (not shown) that
are configured to perform control operations (e.g., receiving feedback from modules,
providing control signals to modules to set and change decoding parameters during
decoding), filtering operations, post-processing operations (e.g., for color space
conversion, up-sampling, etc.), or other operations.

[083] The encoded data buffer is configured to receive and store encoded data in
the bitstream (405), and make the received encoded data available to the demultiplexer
(410). The demultiplexer (410) is configured to parse encoded data from the bitstream
(405} and provide it to the appropriate entropy decoder(s) (420). The entropy decoder(s)
(420) are configured to entropy decode the encoded data, producing output symbols for
parameters. The parameters can represent data to be provided to the residual

reconstruction module(s) (430) (e.g, quantized transform coefficients), side information to
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be provided to the prediction module(s) (440) (e.g., parameters indicating how prediction
has been performed), or other side information (e.g., parameters indicating decisions were
made during encoding). The entropy decoder(s) (420) can be configured to predict values
of parameters based on contextual information, decode differences between the actual
values and predicted values, and combine the differences and predicted values. Thus, the
entropy decoder(s} (420) can be configured to reconstruct parameters that represent
quantized transform coefficients and side information. The entropy decoder(s) (420) can
be configured to perform entropy decoding in various ways. Typical entropy decoding
techniques include Exponential-Golomb decoding, Golomb-Rice decoding, context-
adaptive binary arithmetic decoding, Huffman decoding, run length decoding, Lempel-Ziv
(“LZ") decoding, dictionary decoding, RANS decoding and other variations of ANS
decoding, and combinations of the above. The entropy decoder(s) (420) can be configured
to use different decoding techniques for different kinds of data and to apply multiple
techniques in combination. In particular, the entropy decoder(s) (340) include cne or more
RANS decoders. Examples of RANS decoders are described below with reference to FIG.
6

[084] The residual reconstruction module(s) (430} are configured to reconstruct
values of the residual (432), which typically produces an approximation of the criginal
values of the residual (432). For example, the residual reconstruction module(s) (430)
include a scaler/inverse quantizer and an inverse frequency transformer. The
scaler/inverse quantizer is configured to perform inverse scaling and inverse quantization
on quantized transform coefficients. When the transform stage has not been skipped, an
inverse frequency transformer is configured to perform an inverse frequency transform,
producing reconstructed residual values or sample values. The inverse frequency
transform can be an inverse DCT, an integer approximation thereof, or another type of
inverse frequency transtorm. If the transform stage has been skipped, the inverse
frequency transform is also skipped. In this case, the scaler/inverse quantizer can be
configured to perform inverse scaling and inverse quantization on residual values {or
sample value data), producing reconstructed values. For lossless decompression, the
residual reconstruction module(s) (330) can be bypassed.

[085] The prediction module(s) (440} are configured to predict a current unit of
media (e.g., frame, block, object, set) using previously reconstructed media content, which
is stored in the buffer(s) (435). For example, for video content, the prediction module(s)

(440} can be configured to perform operations for motion compensation relative to
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previously encoded/reconstructed pictures (inter-picture prediction). Or, as another
example, for video content or image content, the prediction module(s) (440) can be
configured to perform operations for intra spatial prediction or intra block copy prediction
within a picture (intra-picture prediction). In some types of decoder system (400), the
prediction module(s) (440) are arranged differently. For example, for audio content, the
prediction module(s) (440} can be configured to perform operations for linear prediction.
In other types of decoder system (440), there are no prediction module(s).

[086] In FIG. 4, the prediction module(s) (440) are configured to produce a
prediction {442) for the current unit of media. The decoder system (400) is configured to
combine the reconstructed values of the residual (432) and the prediction (442) to produce
an approximate or exact reconstruction of the media content. The reconstruction is stored
in the buffer(s) (435) for use in subsequent prediction operations. If residual values have
not been encoded/signaled, the decoder system (400) can be configured to use the values
of the prediction (442) as the reconstruction.

[087] Depending on implementaticn and the type of decompression desired,
modules of the decoder system (400) can be added, omitted, split into multiple modules,
combined with other modules, and/or replaced with like modules. In alternative
embodiments, decoder systems with different modules and/or other configurations of
modules perform one or more of the techniques described herein. Specific embodiments
of decoder systems typically use a variation or supplemented version of the decoder
system (400). The relationships shown between modules within the decoder system (400)
indicate general flows of information in the decoder system; other relationships are not
shown for the sake of simplicity.

V. RANS Encoding/Decoding, in General.

[088] Asymmetric number system (“ANS”) coding/decoding potentially offers
high compression efficiency and low computational complexity. In particular, range ANS
(“RANS”) coding/decoding can work well when symbols have many possible values
(large alphabet) but certain values are very common. RANS encoding/decoding also
permits interleaving of output from multiple RANS encoders into a single output bitstream
of encoded data, with multiple RANS decoders being usable to decode symbols from the
bitstream concurrently, which can speed up the RANS encoding/decoding process.

[089] A RANS encoder encodes a symbol s by modifying an input state x,
producing an updated state x. The state x can be expressed as a single natural number.

The main ¢coding function for RANS encoding can be expressed as:
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C(s, x) = floor(x / fs) << n + mod(x, fs) + cs,
where floor{input) is a function that accepts a real number as input and returns the greatest
integer less than or equal to the input, mod(a, b} is a function that gives the remainder of a
divided by b, and << n indicates a left shift by n bits. The value n indicates a number of
bits used to represent probabilities of values for the symbols in the range 0... 2n-1. The
value n depends on implementation. For example, nis 16. The value fs represents a
factor for the symbol s according to a spread function. In general, the spread function
tracks the frequency of the respective values possible for the symbol s, as sub-ranges
within the range 0. 2n-1, A more probable value for the symbol s has a larger sub-range
and larger value of fs, and a less probable value for the symbol s has a smaller sub-range
and smaller value of fs. For example, if the range is 0...65535, fs can be 16384 for a
value occurring 25% of the time, 4096 for a value occurring 6.25% of the time, 655 for a
value oceurring 1% of the time, and so on. The sum of the probabilities is 100%.
Similarly, for a range represented with n bits, the sum of the values of fs i1s 2n. The value
cs represents an offset for the symbol s, where the offset cs 1s the sum of sub-ranges from
f0 up to fs-1, not including fs.
[090] A RANS decoder decodes a symbol s from an input state x, producing the
symbol s and an updated state x. The state x can be expressed as a single natural number.
The main decoding function for RANS decoding can be expressed as:

D(x) = (s, fs * (x >> n} + (x & mask) - ¢s),
where >> n indicates a right shift by n bits, for a value n as defined above, and & indicates
a bitwise AND operation. The value mask is an n-bit value 2n-1. Thus, mask includes n
1-bits. In the decoding function, the updated value of the state x 1s given by fs * (x >> n)
+ (x & mask) - cs. The value of the symbol s is found such that ¢s <= mod(x, 2n) < cs+1.
[091] The coding function C(s, X} increases the value of the state x. If fs is large,
the value of floor(x / fs) tends to be smaller, and the resulting increase in the value of the
state x tends to be smaller. On the other hand, if fs is small, the value of floor(x / fs) tends
to be larger, and the resulting increase in the value of the state x tends to be larger. Thus,
for more common values of symbols, the increase in state x is smaller. In any case, to
prevent the state x from overflowing whatever buffer holds it, bits are selectively shifted
out of the state x as output encoded data.
[092] Conversely, the decoding function D(x) decreases the value of the state x.
If fs 18 large, the value of fs * (x >> n) tends to be larger, and the resulting decrease in the

value of the state x tends to be smaller. On the other hand, if 5 is small, the value of fs *
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(x >> n) tends to be smaller, and the resulting decrease in the value of the state x tends to
be larger. Thus, for more common values of symbols, the decrease in state x is smaller.
In any case, to prevent the state x from underflowing (since a RANS decoder typically
does not include state for all encoded symbols at the start of decoding), bits are selectively
shifted into the state x as input encoded data.
[093] For implementations in which encoded data is streamed from an encoder
system (including one or more RANS encoders) to a decoder system (including one or
more RANS decoders), the coding function C(s, x) can be embedded in logic that
selectively shifts encoded data cut of the state x as output. Similarly, the decoding
function D(x) can be embedded in logic that selectively shifts encoded data into the state x
as input,
[094] For example, the coding function C(s, x) and logic that selectively shifts
encoded data out of the state x can be represented as follows.
while more symbols do
while x > upper_threshold[s] do
write_to_output ( mod(x, b))
x = floor(x, b)
end while
x = C(s, x)
end while

The outer while loop continues so long as there are more symbols to encode (i.e.,
more symbols 1s true). For a given symbol s to be encoded, the RANS encoder performs
operations that include operations of an inner while loop and coding function C(s, x). The
RANS encoder selectively outputs encoded data from the state x in chunks of log2(b) bits
s0 long as the state x is greater than upper_threshold[s]. The value log2(b) indicates a
number of bits of encoded data (state) to be cutput. For example, log2(b) is 8 to output a
byte at a time, and b is 256. The value of upper_threshold[s] is the upper limit of an
interval within which the state x of the RANS encoder should fall in order to encode the
symbol s. If the state x is higher than the upper limit of the interval, bits are shifted out of
the state x until the state x falls within the interval. The function write_to_output ( mod(x,
b} ) outputs log2(b) bits produced by mod(x, b), which are the log2(b) least-significant bits
of the state x. The state x is then adjusted by shifting log2(b) bits out of the state x,
according to floor(x, b). When the state x is less than or equal to the upper limit of the

interval (that is, x <= upper_threshold[s]), the symbel s is encoded using the coding
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function C(s, x), producing an updated state x.
[095] For corresponding decoding, the decoding function D(x) and logic that
selectively shifts encoded data into the state x can be represented as follows.
while more_encoded data do

(s, x) = D(x)

use(s)

while x < lower_threshold do

X =b x x + new_input
end while
end while

The outer while loop continues so long as there 1s more encoded data to decode (i.e,,
more_encoded data is true). For a given symbol s to be decoded, the RANS decoder
performs operations that include the decoding function D(s, x), a function to use the
symbol s, and operations of an inner while loop. The symbol s is decoded using the
coding function D(x), which also produces an updated state x. The symbol s is used (as
indicated by the use(s) function). Then, the RANS decoder selectively inputs encoded
data in chunks of log2(b) bits into the state x, so long as the state x is less than
lower_threshold. The value log2(b) indicates a number of bits of encoded data (state) to
be input. For example, log2(b) is 8 to input a byte at a time, and b is 256. The value of
lower_threshold is the lower limit of an interval within which the state of the RANS
decoder should fall in order to decode the next symbol s. If the state x is lower than the
lower limit of the interval, bits are shifted into the state until the state x falls within the
interval. Specifically, the state x is shifted by log2(b) bits and a value new_input is added
in, according to b ¥ x + new_input. The value new_input has log2(b) bits.
[096] For additional explanation of RANS encoding and RANS decoding, see,
e.g.(Duda,’ Asymmetric Numeral Systems: Entropy Coding Combining Speed of
Huffman Coding with Compression Rate of Arithmetic Coding,” 24 pp. (2014) and Duda
et al., "The Use of Asymmetric Numeral Systems as an Accurate Replacement for
Huffman Coding," IEEE, pp. 65-69 (2015).
VL.  Example RANS Encoders and RANS Decoders.
[097] Previous RANS encoding/decoding approaches provide good performance
in many scenarios, but there is room for improvement in terms of computational efficiency
for hardware implementations of RANS decoding and adaptiveness of RANS

encoding/decoding. This section describes innovative features of RANS encoders and
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RANS decoders. The features include, but are not limited to, the following.

[098] Two-phase implementation of RANS decoding. A RANS decoder can be
implemented in hardware using a two-phase structure. In one phase (phase 0), RANS
decoder state is selectively updated, potentially consuming encoded data. In the other
phase (phase 1), new encoded data is selectively merged into the RANS decoder state, and
an output symbol is selectively generated. The two-phase structure offers high throughput
for a given amount of area and power. Also, compared to other RANS decoding
implementations, the two-phase structure can permit higher clock rates. Also, the two-
phase structure permits simultaneous (concurrent) decoding of multiple data streams (e g,
two data streams).

[099] Configurable symbol width. A RANS encoder and RANS decoder can
have a default symbol width that 1s configurable. For example, the default symbol width
for symbols of a stream can be set to d bits, where d is between 2 and 9. This allows the
same RANS encoder and RANS decoder to be used for various types of symbols.

[0100] Switchable static probability models. A RANS encoder and RANS decoder
can switch between multiple static probability models. This can allow the RANS
encoder/decoder to adapt quickly to changes in probability distributions of symbols. The
static probatility models can be represented in lookup tables or other “pluggable”
structures. A selected static probability model can be signaled with a syntax element in a
bitstream, which consumes few bits. A moderate number of probability models (e.g., 8,
16, or 32) can provide good compression efficiency without consuming too much storage
Of memory resources.

[0101] Selectively flushing RANS decoder state. A RANS decoder can selectively
flush state between fragments during decoding. If compression efficiency is helped, the
final state after decoding of one fragment can be used as the initial state for decoding of
the next fragment. On the other hand, if compression efficiency is better when decoding
for the next fragment starts with a new initial state, the state of the RANS decoder can be
flushed and reinitialized. The decision about whether to flush RANS decoder state can be
signaled with a syntax element in a bitstream, which consumes few bits.

[0102] Adjusting symbol width between fragments. A RANS encoder and RANS
decoder can selectively adjust the symbol width of symbols for a fragment. Even if the
symbols of a stream all have the same default symbol width, symbols in one fragment of
the stream may have only low values (less than a threshold). In this case, the RANS

encoder/decoder can adjust (narrow) the symbol width for the symbols in that fragment,
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thereby improving compression efficiency. The adjustment to symbol width can be
signaled using a syntax element in the bitstream, which consumes few bits.
|0103] The foregoing innovative features can be used in combination or separately.
A, Example Configurations of RANS Encoders/Decoders.
[0104] FIG. 5 shows an example RANS encoder system (500) in which some
described examples can be implemented. The RANS encoder system (500) includes a
single RANS encoder (520), but in practice a RANS encoder system (500) can include
multiple instances of RANS encoder (520). The modules shown in FIG. 5 are
implemented with dedicated, special-purpose computing hardware (encoder logic, buffers,
etc ) but can alternatively be implemented in software with general-purpose computing
hardware,
[0105] In general, the RANS encoder (520) is configured to accept a stream of
input symbols, encode the input symbols, and output encoded data as part of a bitstream.
In some example implementations, the input symbols have an indicated symbol width, and
the encoded data is arranged as bytes. Typically, the total number of bits output is less
than the total number of bits input, providing compression.
[0106] The input symbol buffer (510) is configured to store input symbols for
encoding. The input symbols have a symbol width (number of bits per symbol). The
input symbols can represent parameters for quantized transform coetficients from media
(e.g., video, images, audio, texture for graphics), parameters for other residual data from
media, or other data. In general, RANS encoding/decoding tends to provide good
compression efficiency for prediction residual values, for which symbols having a value of
zero are most common, symbols having values close to zero are less common, and
symbols having values further from zero are even more rare.
[0107] The input buffer (522} in the RANS encoder {520) is configured to store an
input symbol (512), which is provided from the input symbol buffer (510). One or more
registers (524) in the RANS encoder (520) are configured to store state information. The
RANS encoder (520) is configured to encode the input symbol (512) using state
infermation stored in the register(s) (524). As needed, the RANS encoder (520) writes
encoded data to the output buffer (526), shifting the encoded data out of state information
in the register(s) (524). The output buffer (526) is configured to store a portion (527) of
encoded data. For example, the output buffer (526) is configured to store a byte of
encoded data.

[0108] The encoded data buffer (540) is configured to store the portion (527) of
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encoded data, which is provided by the output buffer (526). The encoded data buffer
(540) can store multiple portions of encoded data, until the encoded data (542) is provided
to the multiplexer (550). The multiplexer (550) 1s configured to multiplex the encoded
data (542) from the encoded data buffer (540) with other information {(e.g , configuration
information {528), initial state information (529), and data from other instances of RANS
encoders).

[0109] In some example implementations, the RANS encoder (520) has a variable
symbol width. For example, the RANS encoder (520) has an input parameter that
indicates a default symbol width for input symbols provided from the input symbol buffer
(510). Typically, the input parameter is set when the RANS encoder (520) is initialized.
This allows the RANS encoder {520) to switch between different default symbol widths
for different encoding sessions. For example, the default symbol width can be a value in
the range of 2 bits to 9 bits. Alternatively, the default symbol width can have some other
value (e.g., 1 bit, 10 bits, 12 bits, or more bits). In altemative example implementations,
the input parameter that indicates the default symbol width can be changed during
encoding. In other alternative example implementations, the RANS encoder (520) always
encodes input symbols having a single, pre-defined symbol width.

[0110] In some example implementations, the RANS encoder (520) can change
configuration parameters between fragments of input symbols/encoded data. A fragment
can in¢lude a variable number of input symbols and variable amount of encoded data. The
RANS encoder (520) is configured to set boundaries between fragments based on various
factors. Primarily, the RANS encoder (520) 1s configured to change configuration
parameters when doing so improves compression efficiency. The RANS encoder (520)
can also be configured to set a boundary between fragments at an existing boundary in
media content (e.g., picture, frame, coding unit, object) or to improve resilience to data
loss (by allowing faster recovery from a known initial state).

[0111] In some example implementations, as shown in FIG. 5, the RANS encoder
(520) is configured to access lookup tables that store probability information for different
static probability models, for different symbol widths, during RANS encoding. Memory
(530) is configured to store the lookup tables. In some example implementations, memory
(530} 1s configured to store lookup tables for 16 different static probability models, for
each symbol width possible. The RANS encoder (520) is configured to use a symbol
width (521) and static probability model selector (523) as indices to the lookup tables, and

is configured to receive probability information (532) in return, Alternatively, memory
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(530) can be configured to store lookup tables for more or fewer static probability models
(e.g., a single static probability model), or the RANS encoder {520) can be configured to
use a dynamic probability model. Instead of using lookup tables, a probability model can
be represented in some other way (e g., a formula or equation, which may use less storage
but be slower than lookup operations). In the examples shown in FIG. 5 (with multiple
static probability models), the RANS encoder (520) 1s configured to signal, as part of
configuration information (528), a syntax element that indicates which static probability
model 1s used during encoding and decoding. When the RANS encoder (520) switches
configuration parameters between fragments, the RANS encoder (520} can switch static
probability models from fragment to fragment. This allows the RANS encoder {(520) to
switch, in mid-stream, to a static probability model that provides more efficient
compression given the local probability distribution of values of input symbols.

[0112] In some example implementations, the RANS encoder (520) is configured
to adjust symbol width, relative to the default symbol width, for RANS encoeding. This
allows the RANS encoder (520) to decrease symbol width used for RANS
encoding/decoding if the input symbols being encoded all have values below certain
threshold values. For example, if the default symbol width is 8 bits for input symbols
having values in the range of 0...235, but all of the input symbols have values less than
64, the symbol width used for compression can be 6 bits (because 26 = 64, for a range of
0...63). In general, for a default symbol width d, values can be checked against thresholds
2d-1, 2d-2, 2d-3, and so on to determine whether symbol width can be decreased. In some
example implementations, the adjustment to symbol width can be 0, -1, -2, or -3.
Alternatively, other values for the adjustment to symbol width can be used. The RANS
encoder (520} is configured to signal, as part of configuration information (528}, a syntax
element that indicates an adjustment to symbol width used during encoding and decoding.
When the RANS encoder (520) switches configuration parameters between fragments, the
RANS encoder (520) can switch the adjustment to symbol width from fragment to
fragment. This allows the RANS encoder (520) to switch, in mid-stream, to a symbol
width that provides more efficient compression given the local values of input symbols. In
alternative example implementations, the RANS encoder (520) does not switch between
different symbol widths.

[0113] In some example implementations, the RANS encoder (520) is configured
to decide whether a corresponding RANS decoder will flush its state for a new fragment or

use the final state from decoding the previous fragment as the initial state for the new
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fragment. The RANS encoder (520) 1s further configured to, when the RANS decoder
state is flushed, determine and signal initial state information (529) for the new fragment.
In practice, the initial state informatien (529) can be signaled as the first portions of the
encoded data (542) for the new fragment. For example, the initial state information (529)
includes four bytes of encoded data (542) or some other amount of encoded data (542).
The RANS encoder (520) is configured to signal, as part of configuration information
(528), a syntax element that indicates whether RANS decoder state should be flushed for a
new fragment. The RANS encoder (520) can signal the syntax element per fragment.
This allows the RANS encoder {(520) to selectively retain RANS decoder state or flush
decoder state, depending on which option provides more efficient compression. Even if
the retained RANS decoder state is not ideal, using it saves signaling of initial state
information {529) for the new fragment. In alternative example implementations, the
RANS encoder (520) always flushes RANS decoder state between fragments. In other
alternative example implementations, the RANS encoder (520) always retains RANS
decoder state between fragments,

[0114] FIG. 6 shows an example RANS decoder system (600) in which some
described examples can be implemented. The RANS decoder system (600) includes a
single RANS decoder (630), but in practice a RANS decoder system (600) can include
multiple instances of RANS decoder (630). The modules shown in FIG. 6 are
implemented with dedicated, special-purpose computing hardware (decoder logic, buffers,
etc.) but can alternatively be implemented in software with general-purpose computing
hardware.

[0115] In general, the RANS decoder (630) is configured to receive encoded data
as part of a bitstream, decode output symbols, and generate a stream of output symbols. In
some example implementations, the encoded data 1s arranged as bytes, and the output
symbols have an indicated symbol width. Typically, the total number of bits output is
greater than the total number of bits input, providing decompression,

[0116] The demultiplexer (610} is configured to demultiplex the encoded data
(612) from the input bitstream, along with demultiplexing other information (e.g.,
configuration information (614), initial state information (616), and data for other
instances of RANS decoders). The demultiplexer (610) is configured to provide the
encoded data (612) to the encoded data buffer (620), which is configured to store the
encoded data (612) and provide it, as needed, to the RANS decoder (630). The encoded
data buffer (620} can store multiple portions (e.g , bytes) of encoded data, until the
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respective portions (622) are provided to the RANS decoder (630).

[0117] The input buffer (632) is configured to store a portion of encoded data
provided by the encoded data buffer (620). For example, the input buffer (632) is
configured to store a byte of encoded data. The RANS decoder (630) is configured to read
a portion of encoded data from the input buffer (632), as needed, shifting the portion of
encoded data into state information. One or more registers (634) in the RANS decoder
(630) are configured to store the state information. The RANS decoder (630) is
configured to decode an output symbol using state information stored in the register(s)
(634). The RANS decoder (630) can perform decoding using a two-phase structure, as
described in the next section, or some other approach. The output buffer (636) in the
RANS decoder (630) is configured to store an output symbol (638), which is subsequently
provided to the symbol vector buffer (650).

[0118] The symbaol vector buffer (650) is configured to store output symbols
generated in the decoding. The output symbols have a symbol width (number of bits per
symbol). The output symbols can represent parameters for quantized transform
coefficients from media (e.g., video, images, audio, texture for graphics), parameters for
other residual data from media, or other data.

[0119] In some example implementations, the RANS decoder (630) has a vanable
symbol width. For example, the RANS decoder (630) has an input parameter that
indicates a default symbol width for output symbols generated by the RANS decoder
(630). Typically, the input parameter is set when the RANS decoder (630) is initialized.
This allows the RANS decoder (630) to switch between different default symbol widths
for different decoding sessions. For example, the default symbol width can be a value in
the range of 2 bits to 9 bits. Alternatively, the default symbol width can have some other
value (e g, 1 bit, 10 bits, 12 bits, or more bits). In alternative example implementations,
the input parameter that indicates the default symbol width can be changed during
decoding. In other alternative example implementations, the RANS decoder (6300)
always decodes output symbols having a single, pre-defined symbol width,

[0120] In some example implementations, the RANS decoder (630) can change
configuration parameters between fragments of output symbols/encoded data. A fragment
can include a variable number of output symbols and variable amount of encoded data.
The RANS decoder (630) is configured to determine boundaries between fragments based
on information signaled in the bitstream (e.g., counts of bytes of encoded data in the

respective fragments, presence of start codes or other markers in the bitstream).
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[0121] In some example implementations, as shown in FIG. 6, the RANS decoder
(630) is configured to access lookup tables that store probability information for different
static probability models, for different symbol widths, during RANS decoding. Memory
(640} is configured to store the lookup tables. In some example implementations, memory
(640) is configured to store lookup tables for 16 different static probability models, for
each symbol width possible. The RANS decoder (640} is configured to use a symbol
width (631) and static probability model selector (633) as indices to the lookup tables, and
is configured to receive probability information (642) in return. Alternatively, memory
(640} can be configured to store lookup tables for more or fewer static probability models
(e g., a single static probability model), or the RANS decoder {(630) can be configured to
use a dynamic probability model. Instead of using lookup tables, a probability model can
be represented in some other way {(e.g., a formula or equation, which may use less storage
but be slower than lookup operations). In the examples shown in FIG. 6 (with multiple
static probability models), the RANS decoder (630) 1s configured to receive, as part of
configuration information (614), a syntax element that indicates which static probability
model is used during decoding. When the RANS decoder (630) switches configuration
parameters between fragments, the RANS decoder (630) can switch static probability
models from fragment to fragment. This allows the RANS decoder (630) to switch, in
mid-stream, to a static probability model that provides more efficient compression given
the local probability distribution of values of input symbeols.

[0122] In some example implementations, the RANS decoder (630) is configured
to adjust symbol width, relative to a default symbol width, for RANS decoding. This
allows the RANS decoder (520) to decrease symbol width used for RANS decoding if the
output symbols being decoded all have values below certain threshold values, as explained
above. In some example implementations, the adjustment to symbol width canbe 0, -1, -
2, or -3. Altemnatively, other values for the adjustment to symbol width can be used. The
RANS decoder (630) is configured to receive, as part of configuration information (614), a
syntax element that indicates an adjustment to symbol width used during decoding. When
the RANS decoder (630) switches configuration parameters between fragments, the RANS
decoder (630) can switch the adjustment to symbol width from fragment to fragment. This
allows the RANS decoder (630) to switch, in mid-stream, to a symbol width that provides
more efficient compression given the local values of input symbols. In alternative
example implementations, the RANS decoder (630) does not switch between different

symbol widths.
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[0123] In some example implementations, the RANS decoder (630) is configured
to decide whether to flush its state for a new fragment or use the final state from decoding
the previous fragment as the initial state for the new fragment. The RANS decoder (630)
is further configured to, when the RANS decoder state is flushed, receive initial state
infermation {616) for the new fragment. In practice, the initial state information (616) can
be signaled as the first portions of the encoded data (612} for the new fragment. For
example, the initial state information (¢16) includes four bytes of encoded data (612) or
some other amount of encoded data (612). The RANS decoder (630) is configured to
receive, as part of configuration information (614), a syntax element that whether RANS
decoder state should be flushed for a new fragment. The RANS decoder (630) can receive
the syntax element per fragment. This allows the RANS decoder (630) to selectively
retain RANS decoder state or flush decoder state. In alternative example implementations,
the RANS decoder (630) always flushes RANS decoder state between fragments. In other
alternative example implementations, the RANS decoder (630) always retains RANS
decoder state between fragments,

B. Generalized RANS Encoding/Decoding Techniques.
[0124] FIGS. 7a and 7b show an example technique (700) for RANS encoding and
example techmque (750) for RANS decoding, respectively. The example technique (700)
for RANS encoding can be performed, for example, by an encoding tool that implements a
RANS encoder as described with reference to FIG. 5 or other RANS encoder. The
example technique (750) for RANS decoding can be performed, for example, by a
decoding tool that implements a RANS decoder as described with reference to F1G. 6 or
other RANS decoder.
[0125] With reference to FIG. 7a, the encoding tool encodes (720) input symbols
using a RANS encoder, thereby generating encoded data for at least part of a bitstream.
Typically, the input symbols are for residual data for media (e.g., video, image, audio,
texture for graphics) but alternatively the input symbols can be for some other type of
data. The RANS encoder implements one or more of the innovations described herein.
For example, the RANS encoder implements operations as described with reference to
FIG. 10a, FIG. 11a, FIG. 12a, and/or FIG. 13a. Alternatively, the RANS encoder
implements other and/or additional operations for RANS encoding.
[0126] The encoding tool outputs (730) the encoded data for the at least part of the
bitstream. The encoded data can include syntax elements that indicate configuration

parameters, as described with reference to FIG. 11a, FIG. 12a, and/or FIG. 13a.
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Alternatively, the encoded data can include syntax elements that indicate other and/or
additional configuration parameters.
[0127] The example technique (700) can be performed as a method by an encoding
tool. A computer system that includes a RANS encoder and encoded data buffer can be
configured to perform the example technique (700). One or more computer-readable
media can have stored thereon computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the example technique (700). Further,
one or more computer-readable media may have stored thereon encoded data produced by
the example technique (700),
[0128] With reference to FIG. 7b, the decoding tool receives (760) encoded data
for at least part of a bitstream. The encoded data can be stored, for example, in an
encoded data buffer that is configured to store the encoded data. The encoded data can
include syntax elements that indicate configuration parameters, as described with
reference to FIG. | 1b, FIG. 12b, and/or FIG. 13b. Alternatively, the encoded data can
include syntax elements that indicate other and/or additional configuration parameters.
[0129] The decoding tool decodes (770) the encoded data for the at least part of the
bitstream using a RANS decoder, thereby generating output symbols. Typically, the
output symbols are for residual data for media (e.g., video, image, audio, texture for
graphics) but alternatively the output symbols can be for some other type of data. The
RANS decoder implements one or more of the innovations described herein. For example,
the RANS decoder implements operations as described with reference to FIGS. 9a-9d,
FIG. 10b, F1G. 11b, FIG. 12b, and/or FIG. 13b. Alternatively, the RANS decoder
implements other and/or additional operations for RANS decoding.
[0130] The example technique (750) can be performed as a method by a decoding
tool. A computer system that includes an encoded data buffer and a RANS decoder can be
configured to perform the example technique (750). One or more computer-readable
media can have stored thereon computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the example technique (750). Further,
one or more computer-readable media may have stored thereon encoded data organized
for decoding according to the example technique (750).

C Examples of RANS Decoding with a Two-phase Structure,
[0131] This section describes two-phase implementations of RANS decoding that
are computationally simple and fast. In special-purpose hardware, the two-phase

implementations can be realized in compact configurations of components. In terms of

35



10

15

20

25

WO 2020/263438 PCT/US2020/032397

compression efficiency, the two-phase implementations benefit from the compression
efficiency of RANS encoding. Tn particular, when implemented with fragment-adaptive
selection of static probability models and adjustable symbol widths, the two-phase
implementations of RANS decoding provide excellent overall performance in many
scenarios.
[0132] FIG. 8 shows phases of an example two-phase structure (800) for RANS
decoding according to some examples described herein. In the approach shown in FIG. 8,
RANS decoding operations are divided into two phases. In one phase (phase 0), a RANS
decoder consumes input encoded data. In the other phase (phase 1), the RANS decoder
generates output symbols. In some example implementations, each phase happens in a
separate clock cycle. In alternative example implementations, the two phases happen in
the same clock cycle. The phases shown in the two-phase structure (800) are logical
phases. Decoding operations are iteratively performed in phase 0 processing, then phase 1
processing, then phase 0 processing, then phase 1 processing, and 5o on.
[0133] The output buffer (810} is configured to store an output symbol from a
previous iteration, if there is a valid output symbol from the previous iteration. The
register (820) is configured to store state information, which is shown as RANS state P1 as
phase 0 begins. In some example implementations, the decoder state 1s a 32-bit value.
Alternatively, the decoder state can have some other number of bits.
[0134] In phase 0, the RANS decoder selectively updates the RANS decoder state,
potentially consuming encoded data in the RANS decoder state. The RANS decoder
determines whether there is an output symbol from the previous iteration (valid output
symbol) in the output buffer (810). If so, the RANS decoder determines (830) forward
probability information for the output symbol (e.g.. using one or more lookup tables) and
updates (840) the RANS decoder state using the forward probability information. Thus, if
the output buffer (810) stores an output symbol from a previous iteration (valid output
symbol), the RANS decoder state is updated using the forward probability information for
that output symbol, producing RANS state PO. Otherwise {no valid output symbol),
RANS decoder state is unchanged in phase 0 (that is, RANS state P( is set to RANS state
P1). In particular, if the state x (that is, RANS state P1) is updated in phase 0, the new
state x {(that 1s, RANS state PO) is calculated using operations equivalent to the following,
which are explained in section V:

x =fs * (x >>n) + (x & mask) - ¢s

An example of such operations is explained in section VI M. This consumes encoded data
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as the encoded data is shifted out of the state. In some iterations, however, the RANS
decoder state is not updated, and encoded data is not consumed.
|0135] After phase O processing, the register (820) stores the selectively updated
RANS decoder state, which is designated RANS state PO,
[0136] As part of phase 1 processing, the RANS decoder selectively merges (860)
a portion {e.g., byte) of encoded data from the input buffer (850) into the RANS decoder
state. If the RANS decoder state (shown as RANS state PO as phase 1 begins) 1s below a
threshold amount, the RANS decoder shifts the RANS decoder state and adds the portion
of encoded data from the input buffer (850). Otherwise, the RANS decoder state is
unchanged in phase 1 (that is, RANS state P1 is set to RANS state PO). Thus, in some
iterations, no encoded data is merged into the RANS decoder state. In any case, after
phase 1 processing, the register (820) stores the RANS decoder state ( shown as RANS
state P1 as phase 1 ends).
[0137] In some example implementation, the RANS decoder state 1s a 32-bit value,
and the 32-bit value is compared to a threshold. For example, the threshold is 224. If the
RANS decoder state is less than the threshold, the RANS decoder state is shifted to the left
by 8 bits, and a byte of encoded data 1s added to the RANS decoder state. That is, the state
x 18 updated using operations equivalent to the following.

x =x << 8+ encoded data_byte.
An example of such operations 1s explained in section VI.M,
[0138] According to the example two-phase structure (800) shown in FIG. 8, at
most one portion of encoded data 1s added to the RANS decoder state per iteration of
phase 1 processing. If a portion of encoded data is added to the RANS decoder state, a
new portion of encoded data can be read into the input buffer (e.g., as part of phase 0
processing in the next iteration). To merge multiple portions of encoded data into the
RANS decoder state, the portions are added in successive iterations of phase 1 processing,
until the RANS decoder state is no longer less than the threshold, at which point a new
output symbol can be generated.
[0139] Still as part of phase 1 processing, the RANS decoder selectively generates
an output symbol from the RANS decoder state. The RANS decoder determines whether
the RANS decoder state (RANS state P1, after the selective merger of encoded data) is
sufficient to generate an output symbol. If so, the RANS decoder determines inverse
probability information (e.g., using one or more lookup tables) and generates an output

symbol. The RANS decoder evaluates some section of the state of the RANS decoder,
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which indicates rolling probabilities for different values of the output symbol, in order to
find the output symbol. On the other hand, if the RANS decoder state (RANS state P1,
after the selective merger of encoded data) is not sufficient to generate an output symbol,
no output symbol is generated. Thus, in some iterations, no output symbols are generated.
[0140] When an output symbol is generated, the output symbol is stored in the
output buffer (810). Processing continues in another iteration of phase 0 processing.
[0141] Overall, the sequence of RANS decoding operations with the two-phase
structure 1s different than prior approaches in several respects. With the two-phase
structure, input encoded data is consumed at a limited rate (e.g., at most one byte at a
time), while additional encoded data is needed in the RANS decoder state. Also, selective
merging operations to merge at most one byte of encoded data are interleaved with
operations to selectively generate at most one output symbol and operations to selectively
update the RANS decoder state. The stages for selective updating RANS decoder state,
selective merging encoded data into RANS decoder state, and selectively generating an
output symbol are discrete, predictable, and structured, which makes them well-suited for
hardware implementations.

D. Examples of RANS Decoding with Two-Phase Structure.
[0142] FIG. 9a shows an example technique (900) for RANS decoding with a two-
phase structure. The example technique (900} can be performed, for example, by a
decoding tool that implements a RANS decoder as described with reference to FIG. 6 or
other RANS decoder, as part of the decoding stage (770) shown in FIG. 7b. Tn any case,
the RANS decoder 15 configured for perform various operations for RANS decoding with
a two-phase structure. The two phases are logical phases, whose operations can be
performed in different clock cycles or in the same clock cycle. FIGS. 9b-9d show details
of operations that can be performed for operations shown more generally in FIG. %a.
[0143] The decoding tool can initialize the RANS decoder by reading one or more
syntax elements from a header for at least part of a bitstream (e.g., for a fragment) and
configuring the RANS decoder based at least in part on the syntax element(s). For
example, the syntax element(s) can include a syntax element that indicates an adjustment
to symbol width for the encoded data for the at least part of the bitstream, in which case
the decoding tool configures the RANS decoder to perform RANS decoding at the
adjusted symbaol width. Or, as another example, the syntax element(s) can include a
selection of a static probability model from among multiple available static probability

models, in which case the decoding tool configures the RANS decoder to perform RANS

38



10

15

20

25

WO 2020/263438 PCT/US2020/032397

decoding using the selected static probability model. Or, as another example, the syntax
element(s) can include a syntax element that indicates whether or not the state of the
RANS decoder is to be flushed and re-initialized for decoding of the encoded data for the
at least part of the bitstream, in which case the RANS decoder selectively flushes and
reloads the state of the RANS decoder. To reload the state of the RANS decoder, the
RANS decoder can retrieve initial state information for the at least part of the bitstream
and load an imtial state, as the state of the RANS decoder, based at least in part on initial
state information. Alternatively, the decoding tool can configure the RANS decoder in
other ways. In some example implementations, the RANS decoder is initialized as part of
iterations of processing with a two-phase structure, with configuration operations
happening in one or both of the phases for some iterations. Alternatively, the RANS
decoder can be initialized with separate operations, before iterations of processing with the
two-phase structure begin.
[0144] As part of a first phase (phase 0 in some examples described herein), the
RANS decoder selectively updates (910) the state of the RANS decoder using probability
information for an output symbol from a previous iteration. In some example
implementations, as shown in FIG. 9b, the RANS decoder determines (912) whether an
output symbol from the previous iteration was generated. If so, the RANS decoder
determines (914) probability information for the output symbol from the previous
iteration, and adjusts (916) the state of the RANS decoder using the probability
information. Adjusting the state of the RANS decoder consumes at least some of the state
of the RANS decoder (and hence consumes some of the encoded data). For example, the
probability information used during phase 0 processing is forward probability information.
The RANS decoder can determine the probability information for the output symbol from
the previous iteration by performing lockup operations in one or more lookup tables (e.g.,
using a symbol width and/or selected static probability model as indexes to the lookup
table(s)), or in some other way. When the state of the RANS decoder is updated in the
first phase, a value for the state x is calculated using operations equivalent to the
following, which are explained in section V:

x =fs * (x >>n) + (x & mask) - cs.
Section VLM describes one example of such operations. In that example, the probability
information for the cutput symbol from the previous iteration includes a sub-range size
fwd f and a cumulative sub-range threshold fwd ¢f. To adjust the state x of the RANS

decoder, the RANS decoder performs adjustments equivalent to:
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x = fwd_f = x[upper] + x[lower] - fwd_cf,
where x represents the state of the RANS decoder after the adjusting, x[upper] represents
an upper portion of the state of the RANS decoder before the adjusting, and x[lower])
represents a lower portion of the state of the RANS decoder before the adjusting,
[0145] On the other hand, if the RANS decoder determines that no output symbol
from the previous iteration was generated (that is, no valid output symbol was generated),
the RANS decoder skips the adjusting the state of the RANS decoder. In this case, the
state of the RANS decoder is unchanged (e g., RANS state PO 1s set to RANS state P1 in
FIG. 8)
[0146] Alternatively, the RANS decoder performs other operations to selectively
update (910} the state of the RANS decoder using probability information for an output
symbol from a previous iteration.
[0147] As part of a second phase (phase 1 in some examples described herein), the
RANS decoder selectively merges (920) a portion {e.g., byte) of encoded data from an
input buffer into the state of the RANS decoder. The input buffer can be configured to
store one byte of the encoded data at a time or some other amount of encoded data.
[0148] In some example implementations, as shown in FIG. 9¢, the RANS decoder
determines (922) whether the state of the RANS decoder satisfies a threshold. For
example, the RANS decoder compares the state of the RANS decoder to the threshold.
The state of the RANS decoder satisfies the threshold if the state of the RANS decoder is
less than the threshold.
|0149] If the state of the RANS decoder satisfies the threshold, the RANS decoder
combines (924) the portion of the encoded data and the state of the RANS decoder. For
example, the RANS decoder shifts the state of the RANS decoder by a given number of
bits, and adds the portion of the encoded data, which has the given number of bits. In
some example implementations, the state x of the RANS decoder is tracked as a 32-bit
value, and the state x is updated using operations equivalent to the following,

X =x << 8+ encoded data byte.

Section VLM describes an example of such operations.
[0150] On the other hand, if the state of the RANS decoder does not satisty the
threshold, the RANS decoder skips combining the portion of the encoded data and the
state of the RANS decoder In this case, no input encoded data is merged into the state of
the RANS decoder for the current iteration.

[0151] Alternatively, the RANS decoder performs other operations to selectively
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merge (920) a portion of the encoded data from the input buffer into the state of the RANS
decoder.

|0152] As part of the second phase, the RANS decoder also selectively generates
(930} an output symbol for a current iteration using the state of the RANS decoder. For
example, the output symbol is for residual data for media. Alternatively, the output
symbol is for some other type of data,

[0153] In some example implementations, as shown in FIG. 9d, the RANS decoder
determines (932) whether the state of the RANS decoder includes sufficient information to
generate the output symbol for the current iteration.

[0154] If so, the RANS decoder determines (934) inverse probability information.
For example, the RANS decoder performs lookup operations in one or more lookup tables,
The RANS decoder then finds (936) the output symbol for the current iteration using the
inverse probability information and the state of the RANS decoder. For example, the
RANS decoder determines a sub-range of the state of the RANS decoder that is associated
with the output symbol for the current iteration. Section VI.M describes an example of
such operations.

[0155] On the other hand, if the state of the RANS decoder does not include
sufficient information to generate an output symbol for the current iteration, the RANS
decoder skips finding the output symbol for the current iteration. In this case, no output
symbol 15 generated for the current iteration.

[0156] Alternatively, the RANS decoder performs other operations to selectively
generate (930) an output symbol for the current iteration using the state of the RANS
decoder.

[0157] With reference to FIG. 9a, the RANS decoder checks (940) whether to
continue and, if so, continues processing in the first phase. In this way, the RANS decoder
iteratively performs processing for the first phase and processing for the second phase.
Thus, the RANS decoder repeats the selective updating (910), selective merging (920),
and selective generating (930) in successive iterations, until there are no more output
symbols to decode in the encoded data for the at least part of the bitstream.

[0158] As part of the first phase, the RANS decoder can perform other operations
(not shown). For example, the RANS decoder can selectively re-fill the input buffer from
the encoded data buffer, adding a new portion (e.g., byte) of encoded data. Or, as another
example, the RANS decoder can selectively write the output symbol from the previous

iteration to a symbol vector buffer.
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[0159] In some example implementations, the RANS decoder 1s implemented with
special-purpose hardware. The special-purpose hardware includes the input buffer, an
output buffer, and a state register. The output buffer is configured to store the output
symbol from the previous iteration, if any, until replacement with the output symbol for
the current iteration, if any.  The state register is configured to store a value that represents
the state of the RANS decoder. The special-purpose hardware further includes logic
(coupled to the output buffer and to the state register) configured to perform the selective
updating (210) operations, logic (coupled to the state register and the input buffer)
configured to perform the selective merging (920} operations, and logic {coupled to the
state register and the output buffer) configured to perform the selective generating (930)
operations. Alternatively, the RANS decoder can be implemented using other
components.

E Examples of RANS Encoding/Decoding with Adaptive Symbol Widths.
[0160] In some previous approaches, a RANS encoder and RANS deceder process
symbols having a single, pre-defined symbol width. Such a RANS encoder and RANS
decoder are unable to process symbols having different symbol widths.
[0161] This section describes examples of a RANS encoder and RANS decoder
with a configurable symbol width. In particular, in some example implementations, an
input parameter to a hardware-based RANS encoder or hardware-based RANS decoder
indicates a symbol width to use for an encoding/decoding session. Having a configurable
symbol width allows the RANS encoder/decoder to work with symbols having any symbol
width within a range of different symbol widths.
[0162] FIG. 10a shows an example technique (1000) for RANS encoding with
adaptive symbol width. The example technique {1000) can be performed, for example, by
an encoding tool that implements a RANS encoder as described with reference to FIG. 5
or other RANS encoder, as part of the encoding stage (720) shown in FIG. 7a.
[0163] To start, as part of encoding input symbeols using a RANS encoder, the
encoding tool selects (1010) a symbol width from among multiple available symbol
widths. For example, the multiple available symbol widths include 1 bit, 2 bits, 3 bits, 4
bits, 5 bits, 6 bits, 7 bits, 8 bits, 9 bits, 10 bits, 11 bits, and 12 bits. Alternatively, the
multiple available symbol widths include other and/or additional symbol widths.
[0164] The enceding tool configures (1020) the RANS encoder to perform RANS
encoding at the selected symbol width. In particular, the encoding tool selects a set of pre-

defined lockup tables having probability information for the selected symbel width. For
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example, the set of pre-defined lookup tables includes one or more pre-defined lockup
tables with forward probability information for the selected symbol width and one or more
pre-defined lookup tables with inverse probability information for the selected symbol
width. The set of pre-defined lookup tables can incorporate a static probability model, for
encoded data, selected from among multiple available static probability models for
different sets of pre-defined lookup tables. Alternatively, the pre-defined lookup tables
can include probability information for only a single static probability model for the
selected symbol width, or the RANS encoder can use a dynamic probability model for the
selected symbol width.

[0165] The encoding tool performs (1030) the RANS encoding at the selected
symbol width, As part of the RANS encoding, the encoding tool can selectively determine
initial state information for a RANS decoder (e.g., for a fragment). In this case, the
encoded data output by the RANS encoder includes the initial state information.

[0166] FIG. 10b shows an example technique (1050) for RANS decoding with
adaptive symbol width, The example technique (1050) can be performed, for example, by
a decoding tool that implements a RANS decoder as described with reference to FIG. 6 or
other RANS decoder, as part of the decoding stage (770) shown in FIG. 7b.

[0167] To start, as part of decoding encoded data using a RANS decoder, the
decoding tool selects (1060) a symbol width from among multiple available symbol
widths. For example, the multiple available symbol widths include 1 bit, 2 bits, 3 bits, 4
bits, 5 bits, 6 bits, 7 bits, 8 bits, 9 bits, 10 bits, 11 bits, and 12 bits. Alternatively, the
multiple available symbol widths include other and/or additional symbol wadths.

[0168] The decoding tool configures (1070) the RANS decoder to perform RANS
decoding at the selected symbol width. In particular, the decoding tool selects a set of pre-
defined lookup tables having probability information for output symbols of the selected
symbol width. For example, the set of pre-defined lookup tables includes one or more pre-
defined lookup tables with forward probability information for the selected symbol width
and one or more pre-defined lookup tables with inverse probability information for the
selected symbol width. The set of pre-defined lookup tables can incorporate a static
probability model, for encoded data, selected from among multiple available static
probability models for different sets of pre-defined lookup tables. Alternatively, the pre-
defined lookup tables can include probability information for only a single static
probability model for the selected symbol width, or the RANS decoder can use a dynamic

probability model for the selected symbol width.
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[0169] The decoding tool performs (1080) the RANS decoding at the selected
symbol width, The RANS decoding can include operations that use a two-phase structure,
as described with reference to FIGS. 9a-9d. Alternatively, the RANS decoding can use
other operations that implement RANS decoding. As part of the RANS decoding, the
decoding tool can receive initial state information for the RANS decoder (e g, for a
fragment) and set the RANS decoder state according. In this case, the encoded data
received by the RANS decoder includes the initial state information.
[0170] For the examples described with reference to FIGS. 10a and 10b, a header
in the bitstream can include a syntax element that indicates the selected symbol width.
Depending on which features of fragment-adaptive RANS encoding are used, the header
in the bitstream can also include {(a) a syntax element that indicates whether or not state of
the RANS decoder is to be flushed/re-initialized for decoding, (b) a syntax element that
indicates an adjustment to the selected symbol width, (¢) a syntax element that indicates a
selection of a static probability model, and/or (d) one or more other syntax elements that
indicate configuration parameters.

F. Examples of Selectively Flushing RANS Decoder State Between

Fragments.

[0171] When a RANS decoder finishes generating output symbols from encoded
data for a fragment, the state of the RANS decoder may still contain useful state
information. That useful state information is lost if the RANS decoder flushes and re-
initializes the RANS decoder state for decoding of another fragment.
[0172] This section describes various aspects of selective flushing of RANS
decoder state between fragments. A RANS encoder can decide whether RANS decoder
state should be retained or flushed/re-initialized for decoding of a new fragment. For
example, for a fragment (or the first p symbols of the fragment, where p is a number such
as 1, 3, 5, 10, or 15 that depends on implementation), the RANS encoder can evaluate
compression efficiency with the RANS decoder state retained versus compression
efficiency with RANS decoder state flushed/re-initialized. In doing so, the RANS encoder
can account for the overhead cost of signaling state information if the RANS decoder state
is flushed/re-initialized. Alternatively, the RANS encoder can perform other operations to
decide whether RANS decoder state should be retained or flushed/re-initialized for
decoding of a new fragment.
[0173] The RANS encoder sets a syntax element that indicates whether RANS

decoder state for a fragment should be retained or flushed/re-initialized. In some example
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implementations, the syntax element 1s a 1-bit flag in a header for the fragment. If the
RANS decoder state is flushed/re-initialized, the RANS encoder also determines and
signals state information for the fragment. In some example implementations, the state
information is signaled as the first few bytes (e.g., 4 bytes) of encoded data for the
fragment. Thus, retaining RANS decoder state from a previous fragment saves encoded
data.
[0174] A RANS decoder receives and parses the syntax element that indicates
whether RANS decoder state for a fragment should be retained or flushed/re-initialized. If
RANS decoder state is retained, the RANS decoder uses the final RANS decoder state
from the previous fragment as the initial RANS decoder state for the new fragment.
Otherwise, the RANS decoder flushes (sets to zero) the RANS decoder state and re-
initializes it by loading state information signaled for the new fragment (e.g., as part of
encoded data for the fragment).

G Examples of RANS Encoding/Decoding with Selective Flushing of RANS

Decoder State Between Fragments.,

[0175] FIG. 11a shows an example technique (1100) for RANS encoding with
selective flushing of RANS decoder state between fragments. The example technique
(1100} can be performed, for example, by an encoding tool that implements a RANS
encoder as described with reference to FIG. 5 or other RANS encoder, as part of the
encoding stage {(720) shown in FIG. 7a.
[0176] To start, as part of encoding input symbols using a RANS encoder, the
encoding tool determines (1110} whether or not state of a RANS decoder is to be flushed
and re-initialized for decoding of encoded data for at least part of the bitstream (in FIG.
11a, for a fragment). The encoding tool sets (1120) a syntax element that indicates
whether or not the state of the RANS decoder is to be flushed/re-initialized for decoding of
the encoded data for the at least part of the bitstream.
[0177] The enceding tool checks (1130) whether the RANS decoder state is to be
flushed/reinitialized. If so, the encoding tool determines (1132} initial state information
for the encoded data for the at least part of the bitstream. In this case, the bitstream
includes (e.g., as part of the encoded data) the initial state information. For example, the
initial state information is a 32-bit value. Otherwise, the bitstream lacks initial state
information for the encoded data for the at least part of the bitstream. The encoding tool
performs (1140) RANS encoding.
[0178] The encoding tool can repeat the technique (1100) on a fragment-by-
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fragment basis. In FIG. 11a, the encoding tool checks (1142) whether to continue for the
next fragment and, if so, determines {1110) whether or not state of a RANS decoder is to
be flushed/re-initialized for decoding of encoded data for the next fragment. In this case,
each of the fragments includes its own header having a syntax element that indicates
whether or not the state of the RANS decoder is to be flushed/re-initialized for decoding of
encoded data for that fragment.

[0179] FIG. 11b shows an example technique (1150) for RANS decoding with
selective flushing of RANS decoder state between fragments. The example technique
(1150} can be performed, for example, by a decoding tool that implements a RANS
decoder as described with reference to FIG. 6 or other RANS decoder, as part of the
decoding stage (770) shown in FIG. 7b.

[0180] To start, as part of decoding encoded data using a RANS decoder, the
decoding tool reads (1160) a syntax element. The syntax element indicates whether ot not
state of a RANS decoder is to be flushed/re-initialized for decoding of the encoded data
for at least part of the bitstream (in FIG. 11b, for a fragment).

[0181] Based at least in part on the syntax element, the decoding tool determines
(1170) whether or not the state of the RANS decoder is to be flushed/re-initialized for
decoding of the encoded data for the at least part of the bitstream.

|0182] The decoding tool checks (1180) whether the RANS decoder state is to be
flushed/reinitialized. If so, the decoding tool retrieves {(1182) initial state information for
the encoded data for the at least part of the bitstream, flushes the state of the RANS
decoder, and loads (1184) an imitial state, as the state of the RANS decoder, based at least
in part on the initial state information. In this case, the bitstream includes (e.g., as part of
the encoded data) the initial state information for the encoded data for the at least part of
the bitstream. For example, the initial state information is a 32-bit value. Otherwise, the
bitstream lacks initial state information for the encoded data for the at least part of the
bitstream.

[0183] The decoding tool performs (1190) RANS decoding of the encoded data for
the at least part of the bitstream. The RANS decoding can include operations that use a
two-phase structure, as described with reference to FIGS. 9a-9d. (In some example
implementations, the first four bytes of encoded data for a fragment can be used to re-fill
RANS decoder state (stages 1182, 1184), as four iterations through phase 1 processing
when there is not enough RANS decoder state to generate an output symbol.)

Alternatively, the RANS decoding can use other operations that implement RANS
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decoding.
[0184] The decoding tool can repeat the technique (1150) on a fragment-by-
fragment basis. In F1G. 11b, the decoding tool checks (1192) whether to continue for the
next fragment and, if so, reads (1160) a syntax element for the next fragment. In this case,
each of the fragments includes its own header having a syntax element that indicates
whether or not the state of the RANS decoder is to be flushed/re-initialized for decoding of
encoded data for that fragment.
[0185] For the examples described with reference to FIGS. 11a and 11b, a header
in the bitstream includes the syntax element that indicates whether or not the state of the
RANS decoder is to be flushed/re-initialized for decoding of the encoded data for the at
least part of the bitstream, Depending on which features of fragment-adaptive RANS
encoding/decoding are used, the header in the bitstream can also include (a) a syntax
element that indicates an adjustment to the selected symbol width, (b) a syntax element
that indicates a selection of a static probability model from among multiple available static
probability models, and/or (¢} one or more other syntax elements that indicate
configuration parameters.

H Examples of Switching Between Multiple Static Probability Models for

Fragments.

|0186] In some previous approaches, a RANS encoder and RANS decoder using a
single static probability model or a single dynamic probability model. When a single
static probability model is used, compression efficiency suffers if the distribution of values
for symbols deviates from the expected distribution reflected in the single static
probability model. Using a dynamic probability model helps compression efficiency even
if the distribution of values for symbols deviates from an expected distribution, but
updating the dynamic probability model can be computationally costly, especially for
hardware implementations of RANS decoding.
[0187] This section describes various aspects of switching static probability
models for fragments of symbols during RANS encoding/decoding. A RANS encoder and
RANS decoder store values for multiple static probability models. Different static
probability models can differ in terms of expected distribution of values of symbols. In
some example implementations, values for static probability models are organized as one
or more lookup tables, indexed by identifier of static probability model. Alternatively, a
static probability model can be represented in some other way (e.g., a formula or

equation). A static probability model can be a piece-wise linear approximation of a curve
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for a cumulative probability function for values of symbols. The curve monotonically
increases. For some static probability models, the curve is flatter. For other static
probability models, the curve 1s steeper for common values {e.g., zero, low values).
Section VI.M describes examples of static probability models.

[0188] A RANS encoder selects one of the static probability models to use for a
fragment of symbols, signaling a syntax element that indicates the selected static
probability model. In some example implementations, there are 16 static probability
models, and the selected static probability model is signaled with a 4-bit fixed length
value. Alternatively, the RANS encoder and RANS decoder can use more or fewer static
probability models.

[0189] In general, the symbols of a fragment are encoded/decoded using the same
static probability model. The RANS encoder selects one of the static probability models
depending on the distribution of values for the symbols of the fragment. The selection
process depends on implementation. For example, the RANS encoder can evaluate v input
symbols (where v is 1, 10, 20, 100, or some other number of input symbols) to determine
which static probability model provides the highest compression efficiency for the v input
symbols, and what the relative benefit of switching to that static probability model would
be. If switching to a new static probability model involves starting a new fragment, the
RANS encoder considers the signaling overhead (header bytes) for the switch. (Although
the RANS encoder could potentially switch for very short fragments of symbols, the
overhead costs would be high.) The RANS encoder can decide whether the improvement
in compression efficiency for a switch to another static probability model (for another
fragment) justifies the overhead cost of switching fragments. In this way, the RANS
encoder can consider which static probability models to use when determining where to
introduce fragment boundaries, with associated switches in static probability models.
[0190] Compared to using a single static probability model, switching between
multiple static probability models can help RANS encoding/decoding handle streams of
input symbols that have different probability distributions (e.g., more zeros than expected;
fewer zeros than expected). Although storing values for multiple static probability models
can be expensive in terms of storage, static probability models can be switched using
simple and efficient signaling. Sending a syntax element to select one of the multiple
static probability models uses less bitrate than sending a new static probability model, and
it 18 simpler {and faster) than updating a dynamic probability model.

L. Examples of RANS Encoding/Decoding with Switching Static Probability
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Models Between Fragments.
[0191] FIG. 12a shows an example technique (1200) for RANS encoding with
switching of static probability models between fragments. The example technique (1200)
can be performed, for example, by an encoding tool that implements a RANS encoder as
described with reference to FIG. 5 or other RANS encoder, as part of the encoding stage
(720) shown in FIG. 7a.
[0192] To start, as part of encoding input symbols using a RANS encoder, the
encoding tool selects (1210), for encoded data for at least part of a bitstream, one of
multiple available static probability models. For example, the multiple available static
probability models include static probability models for which residual data values are
successively more likely to be zero. The static probability models are pre-defined, and a
given static probability model does not dynamically change during encoding/decoding.
The static probability models can be represented in values of pre-defined lookup tables
with probability information for the static probability models, respectively. Alternatively,
the static probability models can be represented in some other way.
[0193] When it selects the static probability model, the encoding tool can consider
any of various factors. For example, the encoding tool can select the static probability
model based at least in part on evaluation of probability distnbution of values of the input
symbols. Or, as another example, the encoding tool can select the static probability model
based at least in part on estimation of which of the multiple available static probability
models results in lowest bitrate for the encoded data for the at least part of the bitstream.
Or, as another example, the encoding tool can select the static probability model based at
least in part on encoding with each the multiple available static probability models to
assess which one results in lowest bitrate for the encoded data for the at least part of the
bitstream. Alternatively, the encoding tool can select the static probability model in some
other way.
[0194] The enceding tool sets (1220) a syntax element that indicates the selected
static probatulity model. For example, the syntax element i1s an n-bit value, which
indicates one of 2n static probability models.
[0195] The enceding tool configures (1230) the RANS encoder to use the selected
static probability mode., Then, the encoding tool performs (1232) RANS encoding using
the selected static probability model.
[0196] The encoding tool can repeat the technique (1200) on a fragment-by-
fragment basis. In FIG. 12a, the encoding tool checks (1240) whether to continue for the
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next fragment and, if so, selects (1210), for the next fragment, one of the multiple
available static probability models. In this case, each of the fragments includes its own
header having a syntax element that indicates a selected static probability model for that
fragment.

[0197] FIG. 12b shows an example technique (1250) for RANS decoding with
switching of static probability models between fragments. The example technique (1250)
can be performed, for example, by a decoding tool that implements a RANS decoder as
described with reference to FIG. 6 or other RANS decoder, as part of the decoding stage
(770) shown in FIG, 7b,

[0198] To start, as part of decoding encoded data using a RANS decoder, the
decoding tool reads (1260) a syntax element that indicates a selection of a static
probability model, for encoded data for at least part of a bitstream, from among multiple
available static probability models. For example, the syntax element is an n-bit value,
which indicates one of 2n static probability models.

[0199] Based at least in part on the syntax element, the decoder tool selects (1270),
for the encoded data for the at least part of the bitstream, one of the multiple available
static probatulity models. For example, the multiple available static probability models
include static probability models for which residual data values are successively more
likely to be zero. The static probability models are pre-defined, and a given static
probability model does not dynamically change during encoding/decoding. The static
probability models can be represented in values of pre-defined lookup tables with
probability information tor the static probability models, respectively. Alternatively, the
static probability models can be represented in some other way.

[0200] The decoding tool configures (1280) the RANS encoder to use the selected
static probability mode. Then, the decoding tool performs (1282) RANS decoding of the
encoded data using the selected static probability model. The RANS decoding can include
operations that use a two-phase structure, as described with reference to FIGS. 9a-9d.
Alternatively, the RANS decoding can use other operations that implement RANS
decoding.

[0201] The decoding tool can repeat the technique (1250) on a fragment-by-
fragment basis. In FIG. 12b, the decoding tool checks (1290) whether to continue for the
next fragment and, if so, reads (1260) a syntax element that indicates a selecticn of a static
probability model for the next fragment. In this case, each of the fragments includes its

own header having a syntax element that indicates a selection of a static probability model
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for that fragment.
[0202] For the examples described with reference to FIGS. 12a and 12b, a header
in the bitstream includes the syntax element that indicates the selected static probability
model for the encoded data for the at least part of the bitstream. Depending on which
features of fragment-adaptive RANS encoding/decoding are used, the header in the
bitstream can also include (a) a syntax element that indicates whether or not state of the
RANS decoder 1s ta be flushed/re-imtialized for decoding, (b) a syntax element that
indicates an adjustment to the selected symbol width, and/or (c) one or more other syntax
elements that indicate configuration parameters.

T Examples of Adjusting Symbol Widths for Different Fragments.
[0203] When a default symbol width is set for symbols of a stream, values of
symbols vary within the stream. Long series of values may be much less than the highest
possible value for the stream (considering the default symbol width).
[0204] This section describes various aspects of adjustment of symbol width
during RANS encoding/decoding. A RANS encoder and RANS decoder can adjust
symbol width (relative to a default symbol width) on a fragment-by-fragment basis, which
can improve compression efficiency because higher values (which are possible with the
default symbol width but not with the adjusted symbol width) need not be considered for
sub-ranges in probability values or RANS decoder state.
[0205] The RANS encoder decides whether to adjust the symbol width fora
fragment. In general, the RANS encoder can decide to adjust (decrease) the symbol width
for a fragment after evaluating the symbols of the fragment. For example, if the default
symbol width is 8 bits (so that the range of possible values is 0...255), but the highest
value among the symbols of the fragment is 61, the symbol width can be decrease by 2
bits (so that the range of values for the symbols is 0...63). More generally, for a default
symbol width d and adjustment z, the RANS encoder can find the largest value of z such
that 2d-z is greater than the highest value among the symbols of the fragment,
[0206] The RANS encoder signals the adjustment to symbol width for the
fragment. For example, a syntax element in a header for the fragment indicates the
adjustment to symbel width for the fragment. In some example implementations, the
syntax element is a 2-bit value, which can indicate an adjustment of 0 bits, -1 bit, -2 bits,
or -3 bits relative to a default symbol width. Alternatively, the adjustment can have some
other range in bits. The RANS encoder adjusts symbol width accordingly, configures the
RANS encoder for RANS encoding at the (adjusted) symbol width, and performs RANS
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encoding at the adjusted symbol width.
[0207] The RANS decoder receives the syntax element that indicates the
adjustment to symbol width. The RANS decoder then adjusts the default symbol width
accordingly, configures the RANS decoder for RANS decoding at the (adjusted) symbol
width, and performs RANS decoding at the adjusted symbol width.

K. Examples of RANS Encoding/Decoding with Adjustable Symbol Width

Between Fragments.

[0208] FIG. 13a shows an example technique (1300) for RANS encoding with
adjustment of symbol widths between fragments. The example technique (1300} can be
performed, for example, by an encoding tool that implements a RANS encoder as
described with reference to FIG. 5 or other RANS encoder, as part of the encoding stage
(720) shown in FIG. 7a.
[0209] To start, as part of encoding input symbols using a RANS encoder, the
encoding tool determines (1310) an adjustment to symbol width for encoded data for at
least part of a bitstream. For example, the encoding tool identifies a highest value among
the input symbols and, depending on the highest value among the input symbols,
determines the adjustment to symbol width.
[0210] The encoding tool sets (1320) a syntax element that indicates the
adjustment to symbol width. For example, the syntax element 1s an n-bit value, which
indicates a decrease by an amount in the range of 0 to 2n-1 bits from the symbol width.
[0211] The encoding tool checks (1330) whether symbol width is to be adjusted
and, if so, adjusts (1332) the symbol width. The encoding tool configures (1340} the
RANS encoder to perform RANS encoding at the adjusted symbol width. For example,
the encoding tool selects a set of pre-defined lookup tables having probability information
for the adjusted symbol width and/or performs other operations to configure the RANS
encoder. The encoding tool then performs (1342) RANS encoding at the adjusted symbol
width.
[0212] The encoding tool can repeat the technique (1300) on a fragment-by-
fragment basis. In FIG. 13a, the encoding tool checks (1344) whether to continue for the
next fragment and, if so, determines (1310), for the next fragment, an adjustment to
symbol width for the encoded data for that fragment. In this case, each of the fragments
includes its own header having a syntax element that indicates an adjustment to symbol
width for the encoded data for that fragment. In some example implementations, a default

symbol width is set for a bitstream, and an adjusted symbol width applies for a given
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fragment, thereby narrowing effective symbol width for that fragment for the RANS
encoder/decoder.

[0213] FIG. 13b shows an example technique (1350) for RANS decoding with
adjustment of symbol widths between fragments. The example technique (1350) can be
performed, for example, by a decoding teol that implements a RANS decoder as described
with reference to FIG. 6 or other RANS decoder, as part of the decoding stage (770)
shown in FIG. 7b.

[0214] To start, as part of decoding encoded data using a RANS decoder, the
decoding tool reads (1360) a syntax element that indicates an adjustment to symbol width
for encoded data for at least part of a bitstream. For example, the syntax element is an n-
bit value, which indicates a decrease by an amount in the range of 0 to 2n-1 bits from the
symbol width. Based at least in part on the syntax element, the decoder tool determines
(1370} an adjustment to symbol width for the encoded data for the at least part of the
bitstream.

[0215] The decoding tool checks (1380) whether symbol width is to be adjusted
and, if so, adjusts (1382) the symbol width. The decoding tool configures (1390) the
RANS decoder to perform RANS decoding at the adjusted symbol wadth. For example,
the decoding tool selects a set of pre-defined lookup tables having probability information
for the adjusted symbol width and/or performs other operations to configure the RANS
decoder. The decoding tool then performs (1392) RANS decoding at the adjusted symbol
width. The RANS decoding can include operations that use a two-phase structure, as
described with reference to FIGS. 9a-9d. Alternatively, the RANS decoding can use other
operations that implement RANS decoding.

[0216] The decoding tool can repeat the technique (1350) on a fragment-by-
fragment basis. In FIG. 13b, the decoding tool checks (1394) whether to continue for the
next fragment and, if so, reads (1360) a syntax element that indicates an adjustment to
symbol width for the next fragment. In this case, each of the fragments includes its own
header having a syntax element that indicates an adjustment to symbol width for the
encoded data for that fragment. In some example implementations, a default symbol
width is set for a bitstream, and an adjusted symbol width applies for a given fragment,
thereby narrowing effective symbol width for that fragment for the RANS decoder.
[0217] For the examples described with reference to FIGS. 13a and 13b, a header
in the bitstream includes the syntax element that indicates the adjustment to symbol width

for the encoded data for the at least part of the bitstream. Depending on which features of
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fragment-adaptive RANS encoding/decoding are used, the header in the bitstream can also
include (a) a syntax element that indicates whether or not state of the RANS decoder is to
be flushed/re-initialized for decoding, (b) a syntax element that indicates a selection of a
static probability model, and/or (¢) one or more other syntax elements that indicate
configuration parameters.

L. Example Bitstreams.
[0218] FIG. 14 shows an example bitstream (1400) that includes multiple
fragments of encoded data. Specifically, the bitstream (1400) includes g variable-size
fragments (1410), which are numbered from fragment 0 to fragment g-1 in FIG. 14.
[0219] Each of the fragments (1410} includes a header (1420) and optional
information, along with one or more bytes of encoded data (1430). The number of bytes
of encoded data (1430) is variable, which in turn makes the fragments (1410) have
variable size.
[0220] In general, the header (1420) includes fields for configuration parameters
and length information. For a fragment, the header (1420) includes a field (1421) with a
syntax element indicating an adjustment to symbol width, a field (1422) with a syntax
element indicating a selection of a static probability model, and a field (1423) with a state
re-imtialization flag. The length field (1425) indicates how many bytes of encoded data
(1430) are 1n the payload for the fragment. If the encoded data (1430) includes more bytes
than can be indicated by the length field (1425), a field (1424) with an extra length flag
indicates the presence of extra length information (1426). In some example
implementations, the length field (1425) 15 one byte, the indicated amount 18 given by the
length field plus 1 (an amount in the range of 1...257 bytes), and the extra length flag is a
one-bit flag. If the encoded data (1430) includes more than 257 bytes, the extra length
flag (1424) indicates the presence of a byte of extra length information (1426).
[0221] The adjustment to symbol width indicates an adjustment to the default
symbol width of the symbols of the fragment. In some example implementations, the
syntax element that indicates an adjustment to symbol width is a 2-bit value, which
indicates a value in the range of 0...3 (for a decrease of 0 bits, 1 bit, 2 bits, or 3 bits). If
the symbols of the fragment contain no values above certain thresholds (which is a
common scenario in heavily compressed streams with high quantization), the RANS
encoder/decoder can process symbols of the stream as if they are narrower (have fewer
bits) than the default symbol width. For a default symbol width d and an adjustment z,

symbols of the fragment are processed as having a symbol width of d — z bits. For
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example, if the default symbol width d is 6 for symbols of a stream, the range of possible
valuesis 0...63. If at least one symbol of the fragment has a value of 32 or more, the
adjustment z is 0. On the other hand, if the highest value is in the range 16.. .31, the
adjustment z is -1, and the effective symbol width for RANS encoding/decoding is 5, for a
range of values 0.. . 31. If the highest value is in the range 8... 15, the adjustment z is -2,
and the effective symbol width for RANS encoding/decoding is 4, for a range of values
0...15. Otherwise, since the highest value 1s less than 8, the adjustment z is -3, and the
effective symbol width for RANS encoding/decoding is 3, for a range of values 0...7.
[0222] The selection of a static probability model indicates one of multiple
available static probability models. In some example implementations, the syntax element
that indicates a selection of a static probability model is a 4-bit value, which indicates one
of 16 static probability models. The static probabilities vary in terms of the tightness of
the expected distribution of values of symbols around 0. For a first static probability
model, all possible values have equal probability. For successive static probability
models, the expected frequency of zero-value symbols increases, and probability for other
values of symbols decreases. For the last static probability model, zero-value symbols are
expected to be very common, and probabilities for most other values of symbols are
expected to be zero.
[0223] The state re-initialization flag (also called a state flushing flag) controls the
flushing of RANS decoder state between fragments. The flag for a fragment indicates
whether the RANS decoder should flush (set to zero) and re-initialize its state for decoding
of the symbols of the fragment. In some example implementations, the flag is a 1-bit
value. If the value of the flag is 1, the first few bytes of the encoded data (1430) are used
to load the state of the RANS decoder. If the value of the flag is 0, the RANS decoder
state at the end of decoding a fragment is carried over to be the initial RANS decoder state
for the next fragment.

M.  Example Combined Implementation for RANS Decoding.
[0224] FIGS. 15a — 15k show code listing fragments (1501-1511) in a hardware
description language for a model of an example decoder. The code listing fragments
(1501-1511) include code for a decoder module, which generally corresponds to a single
instance of a RANS decoder. The code listing (1501-1511) fragments include
placeholders for various lookup tables but, for the sake of brevity, values stored in the
lookup tables are not explicitly shown. Such values depend on implementation. Also, for

the sake of brevity, code is not shown for a feeder module (which writes values from an
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encoded data buffer to an input buffer) and decoder array module (which coordinates
operations of multiple instances of RANS decoder, when output symbols are interleaved in
the encoded data).

[0225] The code listing fragment (1501) in FIG. 15a includes comments about
operations performed in two phases — phase 0 and phase 1 — by different modules. The
code listing fragments (1501-1502) in FIGS. 15a and 15b then include definitions of input
parameters and output parameters for an instance of the decoder module. The input
parameters and output parameters include various parameters used for overall control and
configuration, In particular, the input parameter alphabet bits indicates a default symbol
width. The input parameter out_target indicates a target number of output symbols to be
generated. Other input parameters and output parameters are used to interface with a
feeder module. As shown in the code listing fragment (1502) in FIG. 15b, still other input
parameters and output parameters are used to interface with a downstream module (e g,
indicating an output symbol in an output buffer and indicating whether the output symbol
is a valid output symbol).

[0226] Various variables for the instance of the decoder module track
configuration settings, which can change from fragment to fragment. As shown in the
code listing fragment (1502) in FIG. 15b, the variable eab indicates an adjusted symbol
width, which is later set by decreasing the default symbol width (alphabet bits) by an
adjustment indicated by a field in a header for a fragment. The variable current q
indicates a selected static probability model, as indicated by a field in a header for the
fragment.

[0227] The code listing fragment (1502) in FIG. 15b also includes placeholders for
lookup tables used by the decoder module. In general, each lookup table is depicted as a
3D array. For a lookup table, the first dimension of the 3D array is indexed by adjusted
symbol width / effective alphabet bits. The second dimension is indexed by a selected
static probability model. The third dimension is indexed by bit position for the adjusted
symbol width. Generally, one non-zero value is stored per bit of the symbol width.

[0228] The lookup table base table stores values that correspond to subranges in
the range 0 to 65536. For a given symbol width eab and selected static probability model
current_, the lookup table base table[eab][current q] stores the values for sub-ranges of
the range, or, alternatively, cumulative frequency values for the respective sub-ranges.
For example, for base table[8][12], a lookup table can store the ten values [ 0, 7575,
14276, 25440, 41008, 56352, 642506, 65344, 65408, 0]. This corresponds to the nine sub-
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ranges 0 to 7575, 7576 to 14276, 14277 to 25440, 25441 to 41008, 41009 to 56352, 56353
to 64256, 64257 to 65344, 65345 to 65408, 65409 to 65536. The variable base_table sell
is a 2D array with probability values for different static probability models, for a given
symbol width indicated by the variable eab. The variable base table sel2 is a 1D array
with probability values for a selected static probability model (current_q), for the given
symbel width (eab), as shown in the code listing fragment (1509) of FIG. 15i.

[0229] The lookup table freq_table stores values that relate to the values 1n

base table. For a given symbol width eab and selected static probability model current_q,
the lookup table freq table[eab][current ] stores values, each indicating a difference
compared to a previous value in terms of log 2p-1, for each position p after position 0.
Alternatively, the values can be considered widths of the respective sub-ranges. For
example, for freq_table[8][12], a lookup table can store the ten values [7575, 6701, 5582,
3892, 1918, 494,34 1,1, 0]. This corresponds to the sub-range widths 7575, 6701 x 1,
5582 %2, 3802 x4, 1918 x 8,494 % 16,34 x 32, 1 x 64, and 1 > 128, for the respective
sub-ranges. The variable freq table sell is a 2D array with values for different static
probability models, for a given symbol width indicated by the variable eab. The variable
freq table sel2 is a 1D array with values for a selected static probability model
(current_q), for the given symbol width (eab), as shown in the code listing fragment
(1509) of FIG. 15i.

[0230] The lookup tables rf table, rs_table, and m_table store values for encoded
versions of reciprocals of probability values for different static probability models, for
different symbol widths. By using values from the lookup tables rf table, rs table, and
rn_table in bit shift operations or addition/subtraction operations, the decoder module can
avoid explicit division operations.

[0231] In particular, the lookup table rf_table stores reciprocal values, for inverse
probability distribution information, which are used when determining an output symbol
based on RANS decoder state. The variable rf_table_sell is a 2D array with reciprocal
values for different static probability models, for a given symbol width indicated by the
variable eab. The vanable rf table sel2 is a 1D array with reciprocal values for a selected
static probability model (current_q), for the given symbol width (eab), as shown in the
code listing fragment (1509) of FIG. 151.

[0232] The lookup table rs_table stores shift values, associated with inverse
probability distribution information, which are used when determining an output symbol

based on RANS decoder state. The variable rs_table sell is a 2D array with shift values
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for different static probability models, for a given symbol width indicated by the variable
eab. The variable rs_table sel2 is a 1D array with shift values for a selected static
probability model {current_q), for the given symbol width {eab), as shown in the code
listing fragment (1509) of FIG. 15i.

[0233] The lookup table m_table stores offset values, associated with inverse
probability distribution information, which are used when determining an output symbol
based on RANS decoder state. The vanable rn_table_sell is a 2D array with offset values
for different static probability models, for a given symbol width indicated by the variable
eab. The variable m table sel2 is a 1D array with offset values for a selected static
probability model (current _q), for the given symbol width {(eab), as shown in the code
listing fragment (1509) of F1G. 15i.

[0234] As shown in the code listing fragment (1503) of FIG. 15¢, the decoder
module has multiple control states. The multiple control states include an idle control
state (DSTATE IDLE), three control states in which fields of header bytes are processed
(DSTATE HDRO, DSTATE HDRI1, DSTATE HDR?2), a main processing control state
(DSTATE_PROCESSING) in which the decoder module reads input encoded data and
generates output symbols, and a control state in which the decoder module has finished
processing input encoded data but is still generating output symbols
(DSTATE_DRAINING).

[0235] The code listing fragment (1503) of FIG. 15¢ also shows definitions for
various internal variables used by the decoder module. For example, the variable phase
tracks the current phase — phase 0 or phase 1. The vanable input_buf stores a byte of
encoded data (or, in some cases, byte of a header for a fragment). The variable
input_buf full tracks whether there is a byte in input_buf. The variable sym_buf full
tracks whether the output bufter includes an actual (valid) output symbol from the
previous iteration. The variable input_remaining tracks how much encoded data remains
to be decoded for the fragment. The variables rans_state_pO and rans_state_pl track
RANS decoder state across the two phases. The variable hdr3 tracks whether extra length
infermation is present for a fragment. The variable flush per frag tracks whether the
initial state is flushed and reloaded for the fragment.

[0236] The code listing fragments (1503, 1504) in FIGS. 15¢ and 15d then show
variables used, during phase 1, when a portion of encoded data (from the input buffer
input_buf) is selectively merged into the RANS decoder state. The variable

want_to feed rans is used to track whether RANS decoder state will be updated. The
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variable want_to feed rans is set depending on a comparison of RANS decoder state to a
threshold ( rans_state_p0 < ‘MDU_RANS_LOWER_LIMIT) and whether there is any
input encoded data remaining to be decoded. The variable will feed rans depends on the
variable want to feed rans and whether the input buffer includes a byte of encoded data.
The variable rans_state_with_input is set to the RANS decoder state (rans_state_p0) if the
RANS decoder state will not be updated. In this case, the RANS decoder state is
unchanged. Otherwise, if the RANS decoder state 1s updated, the variable

rans_state with_input 1s set to include the lower-order three bytes of the RANS decoder
state (rans_state p0) and a new byte of encoded data. The updated RANS decoder state is
tracked as rans_state with input. The variable new input remaining tracks the amount of
input encoded data remaining to be decoded.

[0237] The code listing fragments (1503, 1504) in FIGS. 15¢ and 15d next show
variables used, during phase 1, to determine whether to load the input buffer with another
byte of encoded data (tracked with need ib load, then din_req and din_ready) and check
various stall conditions.

[0238] The code listing fragment (1504) in FIG. 15d further shows variables set
during configuration, based on values from a byte of a header. The variable hdr0 z field
is set from a two-bit value 1n a byte in the input buffer. This value indicates an adjustment
to the default symbol width (alphabet bits) for a fragment. The variable hdr0_q_field is
set from a four-bit value in the byte in the input buffer. This value indicates a selected
static probability model for the fragment. The variable eab_unclamped indicates an
adjusted symbol width for the fragment, which 1s based on the default symbol width
(alphabet_bits) and adjustment (hdr_z_field). The variable eab_unclamped indicates the
adjusted symbol width after clamping to be no more than 9 bits.

[0239] The code listing fragments (1504, 1505) in FIGS. 15d and 15¢ next show
variables set when the decoder module selectively generates an output symbol using
inverse probability information and the RANS decoder state. Specifically, the variable
new_sym indicates a potential output symbol, and the vanable sym valid indicates
whether the output symbol is valid.

[0240] The variables inv_seg, inv_base_x, and dist_x are set based on the RANS
decoder state (in the variable cf in), base table values (base table sel2), an adjusted
symbol width (eab), and offset values (rn_table_sel2). The variable cf _in is set based on
the updated RANS decoder state tracked as rans_state with _input. The array

base table sel2 is a 1D array with probability values for a selected static probability

59



10

15

20

25

WO 2020/263438 PCT/US2020/032397

model, for a given symbol width. The array r_table sel2 is a 1D array with offset values
for a selected static probability model, for a given symbol width. The values of

base table sel2 and rn_table sel2 are set for a selected static probability model
(current_q), for the given symbol width (eab), as shown in the code listing (1509) of FIG.
151

[0241] The variable inv_seg indicates a segment, from 0 to 9, associated with an
output symbol. The vanable inv_base_x indicates a base amount, which generally
depends on the segment. The vanable dist_x indicates an adjusted state value based on
cf in, an entry looked up in base table sel2 for the segment, and shift value looked upon
in rn_table sel2 for the segment.

[0242] The variable new_sym indicates a potential output symbol, which 1s set
using the values of the variables inv_seg, inv_base x, and dist x, along with values
looked up in rf _table sel2 and rs_table sel2 for the segment (inv_seg), as shown in FIG.
15e. The array rf table sel2 is a 1D array with inverse reciprocal values for a selected
static probability model, for a given symbol width, The array rs_table sel2 is a 1D array
with shift values for a selected static probability model, for a given symbol width. The
values of 1f table sel2 and rs table sel2 are set for a selected static probability model
(current_q), for the given symbol width (eab), as shown in the code listing (1509) of FIG.
15i. The variables rf and rs are set by lookup operations in rf_table sel2 and

rs_table sel2, using inv_seg as an index. The variable add mul is set by multiplying
dist_x by the value looked up in rf_table_sel2. The variable inv_steps is set by shifting the
top 17 bits of add mul by a shift value looked up in rs_table sel2. The variable new sym
is set by adding the value inv_steps to inv_base x.

[0243] The variable sym wvalid indicates whether a new output symbol is valid.
The variable next_sym_buf full tracks whether a valid symbol has been generated, which
depends on whether the RANS decoder state (tracked with rans_state_with_input) is
greater than a threshold amount ( MDU_RANS LOWER_LIMIT) and whether there are
output symbols remaining to be generated (output_remaining > 0). As explained below,
the variable sym_buf full is set to the value of next sym buff full. In phase 0, the
variable sym_valid is set to indicate whether the new symbol is valid, based on

sym_buf full. In this way, the decoder selectively generates an output symbol (that is, a
valid output symbol) depending on the RANS decoder state. (In some cases, the value of
new sym is calculated but does not indicate an output symbol.)

[0244] The varniable new_rans_state pl indicates an updated RANS decoder state,
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based on the RANS decoder state with a new byte selectively merged in
(rans_state_with_input). The variable new_output_remaining tracks output symbols
remaining to be generated, which is decremented if a valid output symbol has been
generated.

[0245] The code listing fragments (1506, 1507) in FIGS. 15f and 15g show
variables set when the decoder module selectively updates RANS decoder state,
depending on whether an output symbol has been generated. Some of the vanables
depend on values looked up in the arrays base table sel2 and freq table sel2. The array
base table sel2 is a 1D array with probability values for a selected static probability
model, for the given symbol width. The array freq table sel2 isa 1D array with
frequency values for a selected static probability model, for the given symbol width. The
values of base table sel2 and freq table sel2 are set during configuration, based on
values in the header, as described below.

[0246] The variables fwd seg and fwd segstart are set based on the value of the
output symbol (sym}) generated in phase 1 of the previous iteration. The variable fwd seg
indicates a segment, from 0 to 9, associated with the output symbol. The variable

fwd segstart is a base amount, which generally depends on the segment. The variable
fwd_base is set by a lookup operation in the base table (base_table sel2), using fwd_seg
as an index. The variable fwd fa is set by a lookup operation in the frequency table
(freq table sel2), using fwd seg as an index. The variable new rans state p0, which
indicates an updated RANS decoder state, is set using the values of variables fwd_f,

fwd p, and twd cf, along with 16 bits from the RANS decoder state from phase 1
(rans_state_p1[31:16]). The variables fwd _f, fwd p, and fwd_cf are calculated as shown
in the code listing fragment (1507) in FIG. 15g.

[0247] The code listing fragment (1507) in FIG. 15g shows operations performed
when the decoder module is initialized (when the variable nrst 1s 0). The control state of
the decoder module is set to DSTATE_IDLE, and the phase is set to phase 1. State
variables (rans_state p0 and rans state pl), the variable that tracks remaining bytes of
input encoded data to be decoded (input_remaining), and the vanable that tracks
remaining output symbols to be generated (output_remaining) are set to 0. Other variables
indicating an output symbol, whether the cutput symbol is valid, the adjusted symbol
width, the selected static probability model, and values of lookup tables are similarly
initialized.

[0248] The code listing fragments (1507-1511) in FIGS. 15g-15k next show the
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main processing loop for the decoder module (when the variable nrst is 1), as the decoder
module performs operations for phase 0 or phase 1, and as the decoder module transitions
from control state to control state. In particular, the code listing fragments (1507, 1508) in
FIGS. 15g and 15h show operations performed as part of phase 0 processing {when the
variable phase is 0). The decoder module checks are error overrun condition and, if
decoding has not stalled, performs various operations.

[0249] If the control state of the decoder module 1s DSTATE_PROCESSING or
DSTATE DRAINING, the decoder module selectively updates the RANS decoder state.
If the variable sym buf full indicates an output symbol (valid output symbol) was
generated in phase 1 of a previous iteration (see FIGS. 15e and 15j), the decoder module
sets the variable rans_state_p0 to the value of the variable new_rans_state pO (which is set
as shown in FIG. 15g). Otherwise (the variable sym_buf full indicates an output symbol
was not generated in phase 1 of the previous iteration), the decoder module sets the
variable rans state p0 to the value of the variable rans state pl (thatis, the RANS
decoder state is unchanged between phase 1 and phase 0).

[0250] As part of phase 0 processing, the decoder module next handles input,
regardless of control state of the decoder module, as shown in FIG. 15h. Depending on
the values of the vanables din_valid and din_ready (which 1s set during previous phase 1
processing; see FIG. 15d), the decoder module selectively re-fills the input buffer
(input_buf) using another byte of encoded data (from the variable din) and indicates the
input buffer is full (input_buf_full <=1)

|0251] Still as part of phase 0 processing, the decoder module handles output,
regardless of control state of the decoder module, as shown in FIG. 15h. Depending on
the values of the variables sym_valid and sym_ready, which are part of the interface to a
downstream module (see FIG. 15a) and (in the case of sym_valid) set during previous
phase 1 processing (see FIG. 15e), the decoder module selectively outputs an output
symbol (placeholder shown in FIG. 15h) and indicates the output buffer is empty
(sym_buf full <=0).

[0252] This completes the iteration of phase 0 processing. As shown in the code
listing fragment (1511} in F1G. 15k, the decoder module toggles the variable phase. Here,
the variable phase is changed from 0 to 1.

[0253] The code listing fragments (1508-1511) in FIGS. 15h-15k show operations
performed as part of phase 1 processing (when the variable phase is 1). The operations

performed as part of phase 1 processing depends on the control state of the decoder
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module, as shown in the case statement that depends on ctrl_state.

[0254] As shown in the code listing fragment (1508) of FIG. 15h, if the control
state of the decoder module is DSTATE 1DLE, the decoder module is in an idle control
state. The control state of the decoder module is changed to DSTATE _HDRO for
subsequent processing. Variables that track RANS decoder state (rans_state_p0 and
rans_state_pl) are initialized (set to zero). The amount of output symbols remaining to be
generated 1s set to a target amount (out_target), which 1s an input parameter for the
interface to the decoder module. This completes the iteration of phase 1 processing (for
the control state DSTATE IDLE) and, as shown in the code listing fragment (1511} in
FIG. 15k, the decoder module toggles the variable phase, changing the variable phase
from 1 t0 0.

[0255] As shown in the code listing fragment (1509) of FIG. 151, if the control
state of the decoder module is DSTATE _HDRO, the decoder module processes the first
byte of a header for a fragment. Assuming the input buffer stores the first byte of the
header (input_buf full is 1, as set during previous phase 0 processing when the input
buffer is re-filled), the decoder module initializes the amount of bytes of encoded data to
be decoded to zero (input_remaining <= 0) and changes the control state of the decoder
module to DSTATE_HDRI for subsequent processing. The decoder module sets the
variable current_q, which indicates a selected static probability model for the fragment,
based on four bits of the first byte of the header, which are represented with the variable
hdr0_q_field (see FIG. 15d). The decoder module sets the variable hdr3, which indicates
whether the header includes an extra length field, based on another bit in the first byte of
the header. The decoder module sets the variable flush_per flag, which indicates whether
the state of the RANS decoder is flushed and re-initialized for the fragment (or maintained
from the previous fragment), based on another bit in the first byte of the header. The
decoder module sets the variable eab, which indicates an adjusted symbol width for the
fragment, based on two bits of the first byte of the header, which are represented with the
hdr0 z field (see FIG. 15d) and used to calculate eab_clamped. Finally, the decoder
module sets the variable input_buf full to zero to indicate the byte in the input buffer has
been processed. This completes the iteration of phase 1 processing (for the control state
DSTATE HDRO) and, as shown in the code listing fragment (1511} in FIG. 15k, the
decoder module toggles the variable phase, changing the variable phase from 1 to 0.
[0256] As shown in the code listing fragment (1509) of FIG. 151, if the control
state of the decoder module is DSTATE HDRI, the decoder module processes the second
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byte of the header for the fragment, which indicates the length of encoded data in the
fragment. Assuming the input buffer stores the first byte of the header (input_buf_full is
1, as set during previous phase 0 processing when the input buffer is re-filled), the decoder
module sets the values of lookup tables for base _table sel2, freq table sel2, rf table sel2,
rs_table sel2, and rn_table_sel2 based on the selected static probability model (current_q)
and adjusted symbol width eab (see FIG. 15b). The decoder module next sets the amount
of bytes of encoded data to be decoded (input_remaining). If the vanable hdr3 indicates
the header includes an extra length field, the decoder modules sets the amount of bytes of
encoded data to be decoded (input_remaining) to the value of the second byte of the
header (in input_buf), and changes the control state of the decoder module to
DSTATE_HDR?2 for subsequent processing. Otherwise (the variable hdr3 indicates the
header does not include an extra length field), the decoder module sets the amount of bytes
of encoded data to be decoded (input_remaining) to the value of the second byte of the
header plus 1, and changes the control state of the decoder module to

DSTATE PROCESSING for subsequent processing. The decoder module also sets the
variable input_buf_full to zero to indicate the byte in the input buffer has been processed.
This completes the iteration of phase 1 processing (for the control state DSTATE HDRI1)
and, as shown in the code listing fragment (1511) in FIG. 15k, the decoder module toggles
the variable phase, changing the variable phase from 1 to 0.

[0257] As shown in the code listing fragment (1509) of FIG. 15i, if the control
state of the decoder module is DSTATE_HDR?2, the decoder module processes the third
byte of the header for the fragment, which indicates the extra length of encoded data in the
fragment. Assuming the input buffer stores the first byte of the header (input_buf full is
1, as set during previous phase 0 processing when the input buffer is re-filled), the decoder
module sets the amount of bytes of encoded data to be decoded (input_remaining) using
the value of the third byte of the header and the value set for input_remaining when
processing the second byte of the header. The decoder module also changes the control
state of the decoder module to DSTATE PROCESSING for subsequent processing. The
decoder module sets the vaniable input_buf full to zero to indicate the byte in the input
bufter has been processed. This completes the iteration of phase 1 processing (for the
control state DSTATE HDRZ2) and, as shown in the code listing fragment (1511} in FIG.
15k, the decoder module toggles the variable phase, changing the variable phase from 1 to
0.

[0258] As shown in the code listing fragment (1510) of FIG. 15j, if the control
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state of the decoder module 1s DSTATE PROCESSING, the decoder module sets the state
of the RANS decoder (rans_state _p1) to an updated RANS decoder state

(new rans state pl), based on the RANS decoder state with a new byte selectively
merged into it, as explained with reference to FIGS. 15¢ and 15e. The decoder module
updates the amount of bytes of input encoded data remaining to be decoded
(input_remaining) using the variable new_input_remaining, which is set as shown in FIG.
15¢. The decoder module also updates the amount of ocutput symbols remaining to be
generated (output_remaining) using the variable new_output_remaining, which is set as
shown in FIG, 15¢. The decoder module selectively sets the variable input_buf full to
zero, depending on whether the byte of encoded data in the input buffer has been merged
into the decoder state. The decoder module selectively generates an output symbol (sym)
for the current iteration, setting the variable sym to new sym and setting the variable
sym_buf full to next sym_buf full, where new sym and next sym_buf full as set as
shown in FIG. 15e.

[0259] So long as there is at least some encoded data remaining to be decoded, the
control state of the decoder module remains DSTATE _PROCESSING. On the other
hand, if there is no input encoded data remaining to be decoded (new_input_remaining is
0), the decoder module performs other operations. If there is at least one more output
symbol to be generated (new_output_remaining > 0), the decoder module checks the state
of the RANS decoder. If the state of the RANS decoder is not sufficient to continue
decoding (new_rans_state pl1 == ‘MDU_RANS_LOWER_LIMIT), the decoder module
initiates a switch to decoding another fragment, changing the control state of the decoder
module to DSTATE_HDRO and selectively flushing the state of the RANS decoder
(depending on the value of the variable flush _per frag). Otherwise (there is at least one
more output symbol to be generated, and the state of the RANS decoder is sufficient to
continue decoding), the decoder module changes the control state of the decoder module
to DSTATE_DRAINING. If there are no more output symbols to be generated, the
decoder module changes the control state of the decoder module to DSTATE IDLE and
sets a variable done to 1.

[0260] This completes the iteration of phase 1 processing (for the control state
DSTATE PROCESSING). As shown in the code listing fragment (1511} in FIG, 15k, the
decoder module toggles the variable phase, changing the variable phase from 1 to 0.
[0261] As shown in the code listing fragment (1510) of FIG. 15), if the control
state of the decoder module is DSTATE DRAINING, the decoder module sets the state of
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the RANS decoder (rans_state pl) to an updated RANS decoder state
(new_rans_state_p1), based on the RANS decoder state with a new byte selectively
merged into it, as explained with reference to FIGS. 15¢ and 15e. The decoder module
updates the amount of output symbols remaining to be generated (output_remaining) using
the variable new_output_remaining, which is set as shown in FIG. 15e. The decoder
module selectively generates an output symbol (sym) for the current iteration, setting the
variable sym to new_sym and setting the variable sym_buf full to next_sym_buf full,
where new_sym and next_sym_buf full as set as shown in FIG. 15e.

[0262] So long as the state of the RANS decoder 15 sufficient to continue decoding,
the control state of the decoder module remains DSTATE DRAINING. On the other
hand, if the state of the RANS decoder is not sufficient to continue decoding

(new_rans state pl <= ‘MDU RANS LOWER _LIMIT), the decoder module performs
other operations. If there is at least one more output symbol to be generated
(new_output_remaining > 0), the decoder module initiates a switch to decoding another
fragment, changing the control state of the decoder module to DSTATE HDRO and
selectively flushing the state of the RANS decoder (depending on the value of the variable
flush per frag) Otherwise (there are no more output symbols to be generated), the
decoder module changes the control state of the decoder module to DSTATE_IDLE and
sets a variable done to 1.

[0263] This completes the iteration of phase 1 processing (for the control state
DSTATE_DRAINING). As shown in the code listing fragment (1511) in FIG. 15k, the
decoder module toggles the variable phase, changing the variable phase from 1 to 0.
[0264] Finally, as shown in the code listing fragment (1511) in FIG. 15k, for any
other value of ctrl _state, the decoder module changes the control state of the decoder
module to DSTATE_IDLE for subsequent processing. This completes the iteration of
phase 1 processing (for the default contrel state) and, as shown in the code listing
fragment (1511) in FIG. 15k, the decoder module toggles the variable phase, changing the
variable phase from 1 to 0.

VII.  Additional Features.

|0265] The following table shows additional features of some of the innovations

described herein.

RANS Encoder / Decoder Configurable to Work with Multiple Symbol Widths

Al | In a computer system, a method comprising;

66



WO 2020/263438 PCT/US2020/032397

encoding input symbols using a range asymmetric number system

{(“RANS") encoder, thereby generating encoded data for at least part of a
bitstream, wherein the encoding includes:

selecting a symbol width from among multiple available symbol
widths;

configuring the RANS encoder to perform RANS encoding at the
selected symbol width, including selecting a set of pre-defined lookup tables
having probability information for the selected symbol width; and

performing the RANS encoding at the selected symbol width,
and

outputting the encoded data for the at least part of the bitstream.

A2

The method of claim Al, wherein the input symbols are for residual data for
media, and wherein the multiple available symbol widths are selected from the
group consisting of 1 bit, 2 bats, 3 bits, 4 bits, 5 bits, 6 bits, 7 bits, 8 bits, 9 bats,
10 bits, 11 bits, and 12 bats.

A3

The method of claim A1, wherein the set of pre-defined lookup tables includes
one or more pre-defined lookup tables with forward probability information for
the selected symbol width and one or more pre-defined lookup tables with

inverse probability information for the selected symbol width.

A4

The method of claim A1, wherein the set of pre-defined lookup tables
incorporates a static probability model, for the encoded data for the at least part
of the bitstream, selected from among multiple available static probability

models for different sets of pre-defined lockup tables.

AS

The method of claim Al, wherein the performing the RANS encoding includes
determining initial state information for a RANS decoder, wherein the encoded

data for the at least part of the bitstream includes the initial state information.

A6

The method of claim Al, wherein a header in the at least part of the bitstream

includes a syntax element that indicates the selected symbol width.

A7

The method of claim Al, wherein a header in the at least part of the bitstream
includes:

a syntax element that indicates whether or not state of a RANS decoder
is to be flushed/re-initialized for decoding of the encoded data for the at least

part of the bitstream;
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a syntax element that indicates an adjustment to the selected symbol
width for the encoded data for the at least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple

available static probability models.

A8

A computer system comprising a range asymmetric number system (“RANS”)
encoder and an encoded data buffer, the computer system being configured to

perform the method of any one of claims Al to A7.

A9

One or more computer-readable media having stored thereon computer-
executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims Al 1o A7.

AlO

One or more computer-readable media having stored thereon encoded data

produced by the method of any one of claims Al to A7

All

In a computer system, a method comprising:
receiving encoded data for at least part of a bitstream; and
decoding the encoded data for the at least part of the bitstream using a
range asymmetric number system (“RANS”) decoder, thereby generating output
symbols, wherein the decoding includes:
selecting a symbol width from among multiple available symbol
widths;
configuring the RANS decoder to perform RANS decoding at the
selected symbol width, including selecting a set of pre-defined lookup tables
having probability information for output symbols of the selected symbol width;
and

performing the RANS decoding at the selected symbol width.

Al2

The method of claim Al1l, wherein the multiple available symbol widths are
selected from the group consisting of 1 bit, 2 bits, 3 bits, 4 bits, 5 bits, 6 bits, 7
bits, 8 bits, 9 bits, 10 bits, 11 bits, and 12 bits.

Al3

The method of claim A11, wherein the set of pre-defined lookup tables includes
one or more pre-defined lookup tables with forward probatility information for
the selected symbol width and one or more pre-defined lookup tables with

inverse probability information for the selected symbol width.

Al4d

The method of claim A 11, wherein the set of pre-defined lookup tables
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incorporates a static probability model, for the encoded data for the at least part
of the bitstream, selected from among multiple available static probability

models for different sets of pre-defined lockup tables.

AlS

The method of claim All, wherein the performing the RANS decoding
includes:

as part of a first phase, selectively updating state of the RANS decoder
using probability information for an output symbol from a previous iteration,

as part of a second phase, selectively merging a portion of encoded data,
for the at least part of the bitstream, from an input buffer into the state of the
RANS decoder; and

as part of the second phase, selectively generating an output symbol for a

current iteration using the state of the RANS decoder.

Alé

The method of claim All, wherein a header in the at least part of the bitstream

includes a syntax element that indicates the selected symbol width.

Al7

The method of claim A11, wherein a header in the least part of the bitstream
includes:

a syntax element that indicates whether or not state of the RANS decoder
is to be flushed/re-initialized for decoding of the encoded data for the at least
part of the bitstream;

a syntax element that indicates an adjustment to the selected symbol
width for the encoded data for the at least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple

available static probability models.

AlS

A computer system comprising an encoded data buffer and a range asymmetric
number system (“RANS”) decoder, the computer system being configured to

perform the method of any one of claims A1l to Al7.

AlQ

One or more computer-readable media having stored thereon computer-
executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims All to A17.

A20

One or more computer-readable media having stored thereon encoded data
organized for decoding according to the method of any one of claims All to

Al7.
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RANS Encoder / Decoder with Selective Flushing of Initial State for Fragments

Bl

In a computer system, a method comprising:
encoding input symbols using a range asymmetric number system
{(“RANS") encoder, thereby generating encoded data for at least part of a
bitstream, including:
determining whether or not state of a RANS decoder is to be
flushed and re-initialized for deceding of the encoded data for the at least part of
the bitstream;
setting a syntax element that indicates whether or not the state of
the RANS decoder is to be flushed and re-initialized for decoding of the
encoded data for the at least part of the bitstream; and
performing RANS encoding; and
outputting the encoded data for the at least part of the bitstream, wherein
a header in the at least part of the bitstream includes the syntax element that
indicates whether or not the state of the RANS decoder is to be flushed and re-

initialized for decoding of the encoded data for the at least part of the bitstream.

B2

The method of claim B1, wherein:

if the syntax element indicates the state of the RANS decoder is to be
flushed and re-initialized for decoding of the encoded data for the at least part of
the bitstream, the bitstream further includes initial state information for the
encoded data for the at least part of the bitstream; and

if the syntax element indicates the state of the RANS decoder is not to be
flushed and re-initialized for decoding of the encoded data for the at least part of
the bitstream, the bitstream lacks the initial state information for the encoded

data for the at least part of the bitstream.

B3

The method of claim B2, wherein the initial state information 1s a 32-bit value.

B4

The method of claim B1, wherein the header is for one of multiple fragments,
each of the multiple fragments including its own header having a syntax element
that indicates whether or not the state of the RANS decoder is to be flushed and
re-initialized for decoding of encoded data for that fragment, and wherein the
encoding using the RANS encoder is performed on a fragment-by-fragment

basis.

B5

The method of claim B1, wherein the encoding further includes:
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if the state of the RANS decoder is to be flushed and re-initialized for
decoding of the encoded data for the at least part of the bitstream, determining

initial state information for the encoded data for the at least part of the bitstream.

Bo

The method of claim B1, wherein the input symbols are for residual data for

media.

B7

The method of claim B1, wherein the header in the at least part of the bitstream
further includes:

a syntax element that indicates an adjustment to symbol width for the
encoded data for the at least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple

available static probability models.

B8

A computer system comprising a range asymmetric number system (“RANS”)
encoder and an encoded data buffer, the computer system being configured to

perform the method of any one of claims B1 to B7.

B9

One or more computer-readable media having stored thereon computer-
executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims B1 to B7.

B10

One or more computer-readable media having stored thereon encoded data

produced by the method of any one of claims B1 to B7.

Bl11

In a computer system, a method comprising:
receiving encoded data for at least part of a bitstream, wherein a header
in the at least part of the bitstream includes a syntax element that indicates
whether or not state of a range asvmmetric number system (“RANS™) decoder is
to be flushed and re-initialized for decoding of the encoded data for the at least
part of the bitstream; and
decoding the encoded data using the RANS decoder, thereby generating
output symbols, including:
reading the syntax element; and
based at least in part on the syntax element, determining whether
or not the state of the RANS decoder is to be flushed and re-initialized for
decoding of the encoded data for the at least part of the bitstream; and
performing RANS decoding of the encoded data.
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Bl12

The method of claim B11, wherein:

if the syntax element indicates the state of the RANS decoder is to be
flushed and re-initialized for decoding of the encoded data for the at least part of
the bitstream, the bitstream further includes initial state information for the
encoded data for the at least part of the bitstream; and

if the syntax element indicates the state of the RANS decoder is not to be
flushed and re-initialized for decoding of the encoded data for the at least part of
the bitstream, the bitstream lacks the initial state information for the encoded

data for the at least part of the bitstream.

B13

The method of claim B12, wherein the initial state information is a 32-bit value.

B14

The method of claim B11, wherein the header is for one of multiple fragments,
each of the multiple fragments including its own header having a syntax element
that indicates whether or not the state of the RANS decoder is to be flushed and
re-initialized for decoding of encoded data for that fragment, and wherein the
decoding using the RANS decoder is performed on a fragment-by-fragment

basis.

B15

The method of claim B11, wherein the decoding includes, if the state of the
RANS decoder is to be flushed and re-initialized for decoding of the encoded
data for the at least part of the bitstream:

retrieving initial state information for the encoded data for the at least
part of the bitstream; and

loading an initial state, as the state of the RANS decoder, based at least

in part on the initial state information.

Blé

The method of claim B1, wherein the performing the RANS decoding includes:

as part of a first phase, selectively updating state of the RANS decoder
using probability information for an ocutput symbol from a previous iteration;

as part of a second phase, selectively merging a portion of encoded data,
for at least part of a bitstream, from an input buffer into the state of the RANS
decoder; and

as part of the second phase, selectively generating an output symbol for a

current iteration using the state of the RANS decoder.

B17

The method of claim B11, wherein the output symbols are for residual data for

media, and wherein the header in the at least part of the bitstream further
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includes:

a syntax element that indicates an adjustment to symbol width for the
encoded data for the at least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple

available static probability models.

B18

A computer system comprising an encoded data buffer and a range asymmetric
number system (“RANS") decoder, the computer system being configured to

perform the method of any one of claims B11 to B17.

B19

One or more computer-readable media having stored thereon computer-
executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims B11 to B17.

B20

One or more computer-readable media having stored thereon encoded data
organized for decoding according to the method of any one of claims B11 to

B17.

RANS Encoder / Decoder with Switching Between Static Probability Models

C1

In a computer system, a method comprising:
encoding input symbols using a range asymmetric number system
{(“RANS”) encoder, thereby generating encoded data for at least part of a
bitstream, including:
selecting, for the encoded data for the at least part of the
bitstream, one of multiple available static probability models; and
setting a syntax element that indicates the selected static
probability model;
configuring the RANS encoder to perform RANS encoding using
the selected static probability model; and
performing RANS encoding using the selected static probability
model; and
outputting the encoded data for the at least part of the bitstream, wherein
a header in the at least part of the bitstream includes the syntax element that
indicates the selected static probability model for the encoded data for the at

least part of the bitstream.

C2

The method of claim C1, wherein the syntax element is an n-bit value, which
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indicates one of 2n static probability models.

The method of claim C1, wherein the input symbols are for residual data for
media, and wherein the multiple available static probability models include
static probability models for which residual data values are successively more

likely to be zero.

C4

The method of claim C1, wherein the selecting one of the multiple available
static probability models is based at least in part on:

evaluation of probability distribution of values of the input symbols;

estimation of which of the multiple available static probability models
results in lowest bitrate for the encoded data for the at least part of the bitstream;
or

encoding with each the multiple available static probability models to
assess which one results in lowest bitrate for the encoded data for the at least

part of the bitstream.

C5

The method of claim C1, wherein the header is for one of multiple fragments,
each of the multiple fragments including its own header having a syntax element
that indicates a static probability model, for encoded data for that fragment,
selected from among the multiple available static probability models, and
wherein the encoding using the RANS encoder 1s performed on a fragment-by-

fragment basis.

Co6

The method of claim C1, wherein the multiple available static probability
models are represented in values of pre-defined lookup tables with probability

information for the multiple available static probability models, respectively.

C7

The method of claim C1, wherein the header further includes:

a syntax element that indicates whether or not state of a RANS decoder
is to be flushed and re-initialized for decoding of the encoded data for the at
least part of the bitstream; and/or

a syntax element that indicates an adjustment to symbol width for the

encoded data for the at least part of the bitstream.

C3

A computer system comprising a range asymmetric number system (“RANS”)
encoder and an encoded data buffer, the computer system being configured to

perform the method of any one of ¢laims C1 to C7.

C9

One or more computer-readable media having stored thereon computer-
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executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims C1 to C7.

C10

One or more computer-readable media having stored thereon encoded data

produced by the method of any one of claims C1 to C7,

C11

In a computer system, a method comprising:
receiving encoded data for at least part of a bitstream, wherein a header
in the at least part of the bitstream includes a syntax element that indicates a
selection of a static probability model, for the encoded data for the at least part
of the bitstream, from among multiple available static probability models; and
decoding the encoded data using a range asymmetric number system
{"RANS”) decoder, thereby generating output symbeols, including:
reading the syntax element;
selecting one of the multiple available static probability models
based at least in part on the syntax element;
configuring the RANS decoder to perform RANS decoding using
the selected static probability model; and
performing RANS decoding of the encoded data using the

selected static probability model.

Cl2

The method of claim C11, wherein the syntax element is an n-bit value, which

indicates one of 2n static probability models.

C13

The method of claim C11, wherein the output symbols are for residual data for
media, and wherein the multiple available static probability models include
static probability models for which residual data values are successively more

likely to be zero.

C14

The method of claim C11, wherein the decoding the encoded data using the
RANS decoder includes:

as part of a first phase, selectively updating state of the RANS decoder
using probability information for an cutput symbol from a previous iteration,

as part of a second phase, selectively merging a portion of encoded data,
for at least part of a bitstream, from an input buffer into the state of the RANS
decoder; and

as part of the second phase, selectively generating an output symbol for a

current iteration using the state of the RANS decoder.
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C15

The method of claim C11, wherein the header is for one of multiple fragments,
each of the multiple fragments including its own header having a syntax element
that indicates a selection of a static probability model, for encoded data for that
fragment, from among the multiple available static probability models, and
wherein the decoding using the RANS decoder is performed on a fragment-by-

fragment basis.

Clo

The method of claim C11, wherein the multiple available static probability
models are represented in values of pre-defined lookup tables with probability

information for the multiple available static probability models, respectively.

C17

The method of claim C11, wherein the header further includes:

a syntax element that indicates whether or not state of the RANS decoder
is to be flushed and re-initialized for decoding of the encoded data for the at
least part of the bitstream; and/or

a syntax element that indicates an adjustment to symbol width for the

encoded data for the at least part of the bitstream.,

C18

A computer system comprising an encoded data buffer and a range asymmetric
number system (“RANS”) decoder, the computer system being configured to

perform the method of any one of claims C11 to C17.

C19

One or more computer-readable media having stored thereon computer-
executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims C11 to C17.

C20

One or more computer-readable media having stored thereon encoded data
organized for decoding according to the method of any one of claims C11 to
C17.

RANS Encoder / Decoder with Selective Narrowing of Symbol Width for Fragments

Dl

In a computer system, a method comprising:
encoding input symbols using a range asymmetric number system

{(“RANS") encoder, thereby generating encoded data for at least part of a
bitstream, including:

determining an adjustment to symbol width for the encoded data
for the at least part of the bitstream;

setting a syntax element that indicates the adjustment to symbol
width;
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configuring the RANS encoder to perform RANS enceding at the
adjusted symbol width; and
performing the RANS encoding at the adjusted symbol width;
and
outputting the encoded data for the at least part of the bitstream, wherein
a header in the at least part of the bitstream includes the syntax element that
indicates the adjustment to symbol width for the encoded data for the at least

part of the bitstream.

D2

The method of claim D1, wherein the syntax element is an n-bit value, which
indicates a decrease by an amount in the range of 0 to 2n-1 bits from the symbol
width.

D3

The method of claim D2, wherein the symbol width is set for the bitstream, and
wherein the adjustment applies for one of multiple fragments of the bitstream,
thereby narrowing effective symbol width for that fragment for the RANS

encoder and a corresponding RANS decoder.

D4

The method of claim D1, wherein the header is for one of multiple fragments,
gach of the multiple fragments including its own header having a syntax element
that indicates an adjustment to symbol width for the encoded data for that
fragment, and wherein the encoding using the RANS encoder 15 performed on a

fragment-by-fragment basis.

D5

The method of claim D1, wherein the encoding includes:
identifying a highest value among the input symbols;
depending on the highest value among the input symbols, determining

the adjustment to symbol width.

D6

The method of claim D1, wherein the configuring the RANS encoder includes
selecting a set of pre-defined lookup tables having probability information for

the adjusted symbol width.

D7

The method of claim D1, wherein the header further includes:

a syntax element that indicates whether or not state of a RANS decoder
is to be flushed and re-imtialized for decoding of the encoded data for the at
least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model,

for the encoded data for the at least part of the bitstream, from among multiple
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available static probability models.

D8

A computer system comprising a range asymmetric number system (“RANS”)
encoder and an encoded data buffer, the computer system being configured to

perform the method of any one of ¢laims D1 to D7,

D9

One or more computer-readable media having stored thereon computer-
executable instmctions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims D1 to D7.

Dl10O

One or more computer-readable media having stored thereon encoded data

produced by the method of any one of claims D1 to D7.

D11

In a computer system, a method comprising:
receiving encoded data for at least part of a bitstream, wherein a header
in the at least part of the bitstream includes a syntax element that indicates an
adjustment to symbol width for the encoded data for the at least part of the
bitstream, and
decoding the encoded data using a range asymmetric number system
{("RANS") decoder, thereby generating output symbols, including:
reading the syntax element;
based at least in part on the syntax element, determining the
adjustment to symbol width;
configuring the RANS decoder to perform RANS decoding at the
adjusted symbol width; and
performing the RANS decoding at the adjusted symbol width.

D12

The method of claim D11, wherein the syntax element is an n-bit value, which
indicates a decrease by an amount in the range of 0 to 2n-1 bits from the symbol

width.

D13

The method of claim D12, wherein the symbol width is set for the bitstream, and
wherein the adjustment applies for one of multiple fragments of the bitstream,
thereby narrowing effective symbol width for that fragment for the RANS

decoder.

D14

The method of claim D11, wherein the header is for ane of multiple fragments,
each of the multiple fragments including its own header having a syntax element
that indicates an adjustment to symbol width for the encoded data for that

fragment, and wherein the decoding using the RANS decoder is performed on a
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fragment-by-fragment basis.

D15

The method of claim D11, wherein the decoding the encoded data using the
RANS decoder includes:

as part of a first phase, selectively updating state of the RANS decoder
using probability information for an output symbol from a previous iteration;

as part of a second phase, selectively merging a portion of encoded data,
for at least part of a bitstream, from an input buffer into the state of the RANS
decoder; and

as part of the second phase, selectively generating an output symbol for a

current iteration using the state of the RANS decoder.

Dlé6

The method of claim D11, wherein the configuring the RANS decoder includes
selecting a set of pre-defined lookup tables having probability information for

the adjusted symbol width.

D17

The method of claim D11, wherein the header further includes:

a syntax element that indicates whether or not state of the RANS decoder
is to be flushed and re-initialized for decoding of the encoded data for the at
least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple

available static probability models.

DI8

A computer system comprising an encoded data buffer and a range asymmetric
number system (“RANS”) decoder, the computer system being configured to

perform the method of any one of claims D11 to D17.

D19

One or more computer-readable media having stored thereon computer-
executable instructions for causing one or more processors, when programmed

thereby, to perform the method of any one of claims D11 to D17,

D20

One or more computer-readable media having stored thereon encoded data
organized for decoding according to the method of any one of claims D11 to
D17,

[0266]

In view of the many possible embodiments to which the principles of the

disclosed invention may be applied, it should be recognized that the illustrated

embodiments are only preferred examples of the invention and should not be taken as

limiting the scope of the invention. Rather, the scope of the invention is defined by the
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following claims. We therefore claim as our invention all that comes within the scope and

spirit of these claims,
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CLAIMS

1. A computer system comprising:

an encoded data buffer configured to store encoded data for at least part of a
bitstream; and

a range asymmetric number system (“RANS”) decoder configured to perform
operations comprising:

as part of a first phase, selectively updating state of the RANS decoder
using probability information for an output symbol from a previous iteration;

as part of a second phase, selectively merging a portion of the encoded data
from an input buffer into the state of the RANS decoder; and

as part of the second phase, selectively generating an output symbol for a
current iteration using the state of the RANS decoder.

2 The computer system of claim 1, wherein the operations further comprise
initializing the RANS decoder, wherein the initializing the RANS decoder includes:

reading one or more syntax elements from a header for the at least part of the
bitstream; and

configuring the RANS decoder based at least in part on the one or more syntax
elements.

3. The computer system of claim 2, wherein the one or more syntax elements
include:

a syntax element that indicates whether or not the state of the RANS decoder is to
be flushed and re-initialized for decoding of the encoded data for the at least part of the
bitstream;

a syntax element that indicates an adjustment to symbol width for the encoded data
for the at least part of the bitstream; and/or

a syntax element that indicates a selection of a static probability model, for the
encoded data for the at least part of the bitstream, from among multiple available static
probability models.

4. The computer system of claim 1, wherein the output symbols are for residual
data for media, wherein the first phase and the second phase are logical phases, wherein
the first phase and the second phase are performed in different clock cycles or in the same
clock cycle, and wherein the output symbols are from a single data stream or multiple
different data streams,

5. The computer system of claim 1, wherein the selectively updating the state of
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the RANS decoder includes:
determining whether the output symbol from the previous iteration was generated;
if so:
determining the probability information for the output symbol from the
previous iteration; and
adjusting the state of the RANS decoder using the probability information,
thereby consuming at least some of the state of the RANS decoder; and

otherwise, skipping the adjusting the state of the RANS decoder.

6. The computer system of claim 5, wherein the probability information includes a
sub-range size fwd_f for the output symbol from the previous iteration and a cumulative
sub-range threshold fwd_cf for the output symbeol from the previous iteration, and wherein
the adjusting the state of the RANS decoder includes performing adjustments
mathematically equivalent to:

x = fwd_f = x[upper] + x[lower] - fwd_cf,
wherein x represents the state of the RANS decoder after the adjusting, x[upper]
represents an upper portion of the state of the RANS decoder before the adjusting, and
x[lower] represents a lower portion of the state of the RANS decoder before the adjusting.

7. The computer system of claim 1, wherein the selectively merging the portion of
the encoded data includes:

determining whether the state of the RANS decoder satisfies a threshold;

if so, combining the portion of the encoded data and the state of the RANS
decoder; and

otherwise, skipping the combining the portion of the encoded data and the state of
the RANS decoder.

8. The computer system of claim 7, wherein the combining the portion of the
encoded data and the state of the RANS decoder includes:

shifting the state of the RANS decoder by a given number of bits; and

adding the portion of the encoded data, which has the given number of bits.

9. The computer system of claim 1, wherein the probability information used to
selectively update the state of the RANS decoder is forward probability information, and
wherein the selectively generating the output symbol for the current iteration includes:

determining whether the state of the RANS decoder includes sufficient information
to generate the output symbol for the current iteration;

if so, determining inverse probability information and finding the output symbeol
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for the current iteration using the inverse probability information and the state of the
RANS decoder; and

otherwise, skipping the finding the output symbol for the current iteration.

10. The computer system of claim 9, wherein the finding the output symbol for the
current iteration includes determining a sub-range of the state of the RANS decoder that is
associated with the output symbol for the current iteration,

11. The computer system of claim 1, wherein the operations further comprise
repeating the selectively updating, the selectively merging, and the selectively generating
in successive iterations, until there are no more output symbols to decode in the encoded
data for the at least part of the bitstream.

12. The computer system of claim 1, wherein the RANS decoder 1s implemented
with special-purpose hardware including:

the input bufter,

an output buffer configured to store the output symbol from the previous iteration,
if any, until replacement with the output symbol for the current iteration, if any;

a state register configured to store a value that represents the state of the RANS
decoder;

logic, coupled to the output buffer and to the state register, configured to perform
the selectively updating;

logic, coupled to the state register and the input bufter, configured to perform the
selectively merging; and

logic, coupled to the state register and the output buffer, configured to perform the
selectively generating.

13. The computer system of claim 1, wherein the operations further include, as
part of the first phase:

selectively re-filling the input buffer from the encoded data buffer; and/or

selectively writing the output symbol from the previous iteration to a symbol
vector buffer.

14. In a computer system, a method comprising:

receiving encoded data for at least part of a bitstream;

decoding the encoded data using a range asymmetric number system (“RANS”)
decoder, including:

as part of a first phase, selectively updating state of the RANS decoder

using probability information for an cutput symbol from a previous iteration,;
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as part of a second phase, selectively merging a portion of the encoded data
from an input buffer into the state of the RANS decoder; and

as part of the second phase, selectively generating an output symbol for a
current iteration using the state of the RANS decoder.

15 One or more computer-readable media storing computer-executable
instructions for causing one or more processors, when programmed thereby, to cause a
range asymmetric number system (“RANS”) decoder to perform operations comprising;

as part of a first phase, selectively updating state of the RANS decoder using
probability information for an output symbol from a previous iteration,;

as part of a second phase, selectively merging a portion of encoded data, for at
least part of a bitstream, from an input bufter into the state of the RANS decoder, and

as part of the second phase, selectively generating an output symbol for a current

iteration using the state of the RANS decoder.
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adjustment to symbol width.

Adjust symbol width

1390 l
2

perform RANS encoding at the |-
(adjusted) symbol width.

1342 l
2

Pertorm RANS encoding.

no

Configure RANS decoder to
perform RANS deceding at the -
(adjusted) symbol width.

1392 l
2

Perform RANS decoding.
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